DOI QR코드

DOI QR Code

Experimental animal models for development of human enterovirus vaccine

  • Jae Min Song (School of Biopharmaceutical and Medical Sciences, Sungshin Women's University)
  • Received : 2023.08.25
  • Accepted : 2023.08.26
  • Published : 2023.10.31

Abstract

Enterovirus infections induce infectious diseases in young children, such as hand, foot, and mouth disease which is characterized by highly contagious rashes or blisters around the hands, feet, buttocks, and mouth. This predominantly arises from enterovirus A71 or coxsackievirus A16 infections and in severe cases, they can lead to encephalitis, paralysis, pulmonary edema, or even fatality, representing a global health threat. Due to the absence of effective therapeutic strategies for these infections, various experimental animal models are being investigated for the development of vaccines. During the early stages of research on enterovirus infections, non-human primate infections exhibited symptoms like those in humans, leading to their utilization as model animals. However, due to economic and ethical considerations, their current usage is limited. While enterovirus infections do not readily occur in mice, an infection model with mouse-adapted strain in neonatal mice has been employed. Cellular receptors have been identified in human cells, and genetically modified mice expressing these receptors have been used. Most recently, the utilization of Mongolian gerbil model is actively being considered and should be pursued for further animal model development. So, herein, we provide a summarized overview of the current portfolio of available enterovirus infection models, emphasizing their respective advantages and limitations.

Keywords

Acknowledgement

This work was supported by the Sungshin University Research Grant of 2019-1-81-052.

References

  1. Wang X, Peng W, Ren J, et al. A sensor-adaptor mechanism for enterovirus uncoating from structures of EV71. Nat Struct Mol Biol 2012;19:424-9.
  2. Zhu H, Liu X, Wu Y, et al. Identification of a neutralizing linear epitope within the VP1 protein of coxsackievirus A10. Virol J 2022;19:203.
  3. Yamayoshi S, Yamashita Y, Li J, et al. Scavenger receptor B2 is a cellular receptor for enterovirus 71. Nat Med 2009;15:798-801.
  4. Tan CW, Poh CL, Sam IC, Chan YF. Enterovirus 71 uses cell surface heparan sulfate glycosaminoglycan as an attachment receptor. J Virol 2013;87:611-20.
  5. Nishimura Y, Shimojima M, Tano Y, Miyamura T, Wakita T, Shimizu H. Human P-selectin glycoprotein ligand-1 is a functional receptor for enterovirus 71. Nat Med 2009;15:794-7.
  6. Yang B, Chuang H, Yang KD. Sialylated glycans as receptor and inhibitor of enterovirus 71 infection to DLD-1 intestinal cells. Virol J 2009;6:141.
  7. Herrero LJ, Lee CS, Hurrelbrink RJ, Chua BH, Chua KB, McMinn PC. Molecular epidemiology of enterovirus 71 in peninsular Malaysia, 1997-2000. Arch Virol 2003;148:1369-85.
  8. Chan LG, Parashar UD, Lye MS, et al. Deaths of children during an outbreak of hand, foot, and mouth disease in Sarawak, Malaysia: clinical and pathological characteristics of the disease: for the Outbreak Study Group. Clin Infect Dis 2000;31:678-83.
  9. Khanh TH, Sabanathan S, Thanh TT, et al. Enterovirus 71-associated hand, foot, and mouth disease, Southern Vietnam, 2011. Emerg Infect Dis 2012;18:2002-5.
  10. Duong V, Mey C, Eloit M, et al. Molecular epidemiology of human enterovirus 71 at the origin of an epidemic of fatal hand, foot and mouth disease cases in Cambodia. Emerg Microbes Infect 2016;5:e104.
  11. van der Sanden S, Koopmans M, Uslu G, van der Avoort H; Dutch Working Group for Clinical Virology. Epidemiology of enterovirus 71 in the Netherlands, 1963 to 2008. J Clin Microbiol 2009;47:2826-33.
  12. Kung YA, Hung CT, Liu YC, Shih SR. Update on the development of enterovirus 71 vaccines. Expert Opin Biol Ther 2014;14:1455-64.
  13. Li J, Liu G, Liu X, et al. Optimization and characterization of candidate strain for coxsackievirus A16 inactivated vaccine. Viruses 2015;7:3891-909.
  14. Hober D, Sane F, Jaidane H, Riedweg K, Goffard A, Desailloud R. Immunology in the clinic review series; focus on type 1 diabetes and viruses: role of antibodies enhancing the infection with coxsackievirus-B in the pathogenesis of type 1 diabetes. Clin Exp Immunol 2012;168:47-51.
  15. Hoang MT, Nguyen TA, Tran TT, et al. Clinical and aetiological study of hand, foot and mouth disease in southern Vietnam, 2013-2015: inpatients and outpatients. Int J Infect Dis 2019;80:1-9.
  16. Yu S, Liao Q, Zhou Y, et al. Population based hospitalization burden of laboratory-confirmed hand, foot and mouth disease caused by multiple enterovirus serotypes in Southern China. PLoS One 2018;13:e0203792.
  17. Wang J, Teng Z, Cui X, et al. Epidemiological and serological surveillance of hand-foot-and-mouth disease in Shanghai, China, 2012-2016. Emerg Microbes Infect 2018;7:8.
  18. Yi L, Lu J, Kung HF, He ML. The virology and developments toward control of human enterovirus 71. Crit Rev Microbiol 2011;37:313-27.
  19. Velandia-Romero ML, Acosta-Losada O, Castellanos JE. In vivo infection by a neuroinvasive neurovirulent dengue virus. J Neurovirol 2012;18:374-87.
  20. Vermillion MS, Lei J, Shabi Y, et al. Intrauterine Zika virus infection of pregnant immunocompetent mice models transplacental transmission and adverse perinatal outcomes. Nat Commun 2017;8:14575.
  21. Couderc T, Chretien F, Schilte C, et al. A mouse model for Chikungunya: young age and inefficient type-I interferon signaling are risk factors for severe disease. PLoS Pathog 2008;4:e29.
  22. Mathur A, Arora KL, Chaturvedi UC. Congenital infection of mice with Japanese encephalitis virus. Infect Immun 1981;34:26-9.
  23. Gu J, Wu J, Cao Y, et al. A mouse model for infection with enterovirus A71 in small extracellular vesicles. mSphere 2020;5:e00377-20.
  24. Mao Q, Hao X, Hu Y, et al. A neonatal mouse model of central nervous system infections caused by Coxsackievirus B5. Emerg Microbes Infect 2018;7:185.
  25. Mao Q, Li N, Yu X, et al. Antigenicity, animal protective effect and genetic characteristics of candidate vaccine strains of enterovirus 71. Arch Virol 2012;157:37-41.
  26. Sickles GM, Mutterer M, Feorino P, Plager H. Recently classified types of Coxsackie virus, group A; behavior in tissue culture. Proc Soc Exp Biol Med 1955;90:529-31.
  27. Chua BH, Phuektes P, Sanders SA, Nicholls PK, McMinn PC. The molecular basis of mouse adaptation by human enterovirus 71. J Gen Virol 2008;89(Pt 7):1622-32.
  28. McMinn P, Lindsay K, Perera D, Chan HM, Chan KP, Cardosa MJ. Phylogenetic analysis of enterovirus 71 strains isolated during linked epidemics in Malaysia, Singapore, and Western Australia. J Virol 2001;75:7732-8.
  29. McMinn P, Stratov I, Nagarajan L, Davis S. Neurological manifestations of enterovirus 71 infection in children during an outbreak of hand, foot, and mouth disease in Western Australia. Clin Infect Dis 2001;32:236-42.
  30. Wang YF, Chou CT, Lei HY, et al. A mouse-adapted enterovirus 71 strain causes neurological disease in mice after oral infection. J Virol 2004;78:7916-24.
  31. Chen YC, Yu CK, Wang YF, Liu CC, Su IJ, Lei HY. A murine oral enterovirus 71 infection model with central nervous system involvement. J Gen Virol 2004;85(Pt 1):69-77.
  32. Huang SW, Wang YF, Yu CK, Su IJ, Wang JR. Mutations in VP2 and VP1 capsid proteins increase infectivity and mouse lethality of enterovirus 71 by virus binding and RNA accumulation enhancement. Virology 2012;422:132-43.
  33. Kim YI, Song JH, Kwon BE, et al. Pros and cons of VP1-specific maternal IgG for the protection of enterovirus 71 infection. Vaccine 2015;33:6604-10.
  34. Osorio JE, Schoepp RJ, Yuill TM. Effects of La Crosse virus infection on pregnant domestic rabbits and mongolian gerbils. Am J Trop Med Hyg 1996;55:384-90.
  35. Hong Y, He ZJ, Tao W, Fu T, Wang YK, Chen Y. Experimental infection of Z:ZCLA Mongolian gerbils with human hepatitis E virus. World J Gastroenterol 2015;21:862-7.
  36. Yao PP, Qian L, Xia Y, et al. Enterovirus 71-induced neurological disorders in young gerbils, Meriones unguiculatus: development and application of a neurological disease model. PLoS One 2012;7:e51996.
  37. Xu F, Yao PP, Xia Y, et al. Enterovirus 71 infection causes severe pulmonary lesions in gerbils, meriones unguiculatus, which can be prevented by passive immunization with specific antisera. PLoS One 2015;10:e0119173.
  38. Sun YS, Xia Y, Xu F, et al. Development and evaluation of an inactivated coxsackievirus A16 vaccine in gerbils. Emerg Microbes Infect 2022;11:1994-2006.
  39. Yi EJ, Kim YI, Kim SY, et al. A bivalent inactivated vaccine prevents enterovirus 71 and coxsackievirus A16 infections in the Mongolian gerbil. Biomol Ther (Seoul) 2023;31:350-8.
  40. Zhang Y, Li J, Li Q. Immune evasion of enteroviruses under innate immune monitoring. Front Microbiol 2018;9:1866.
  41. Sun J, Ennis J, Turner JD, Chu JJ. Single dose of an adenovirus vectored mouse interferon-α protects mice from lethal EV71 challenge. Antiviral Res 2016;134:207-15.
  42. Lin H, Huang L, Zhou J, et al. Efficacy and safety of interferon-α2b spray in the treatment of hand, foot, and mouth disease: a multicenter, randomized, double-blind trial. Arch Virol 2016;161:3073-80.
  43. Khong WX, Yan B, Yeo H, et al. A non-mouse-adapted enterovirus 71 (EV71) strain exhibits neurotropism, causing neurological manifestations in a novel mouse model of EV71 infection. J Virol 2012;86:2121-31.
  44. Caine EA, Moncla LH, Ronderos MD, Friedrich TC, Osorio JE. A single mutation in the VP1 of enterovirus 71 is responsible for increased virulence and neurotropism in adult interferon-deficient mice. J Virol 2016;90:8592-604.
  45. Liao CC, Liou AT, Chang YS, et al. Immunodeficient mouse models with different disease profiles by in vivo infection with the same clinical isolate of enterovirus 71. J Virol 2014;88:12485-99.
  46. Liou AT, Wu SY, Liao CC, Chang YS, Chang CS, Shih C. A new animal model containing human SCARB2 and lacking stat-1 is highly susceptible to EV71. Sci Rep 2016;6:31151.
  47. Wang SM, Lei HY, Yu CK, Wang JR, Su IJ, Liu CC. Acute chemokine response in the blood and cerebrospinal fluid of children with enterovirus 71-associated brainstem encephalitis. J Infect Dis 2008;198:1002-6.
  48. Shen FH, Tsai CC, Wang LC, et al. Enterovirus 71 infection increases expression of interferon-gamma-inducible protein 10 which protects mice by reducing viral burden in multiple tissues. J Gen Virol 2013;94(Pt 5):1019-27.
  49. Yang SL, Chou YT, Wu CN, Ho MS. Annexin II binds to capsid protein VP1 of enterovirus 71 and enhances viral infectivity. J Virol 2011;85:11809-20.
  50. Liu J, Dong W, Quan X, Ma C, Qin C, Zhang L. Transgenic expression of human P-selectin glycoprotein ligand-1 is not sufficient for enterovirus 71 infection in mice. Arch Virol 2012;157:539-43.
  51. Lin YW, Yu SL, Shao HY, et al. Human SCARB2 transgenic mice as an infectious animal model for enterovirus 71. PLoS One 2013;8:e57591.
  52. Fujii K, Nagata N, Sato Y, et al. Transgenic mouse model for the study of enterovirus 71 neuropathogenesis. Proc Natl Acad Sci U S A 2013;110:14753-8.
  53. Chumakov M, Voroshilova M, Shindarov L, et al. Enterovirus 71 isolated from cases of epidemic poliomyelitis-like disease in Bulgaria. Arch Virol 1979;60:329-40.
  54. Hashimoto I, Hagiwara A, Kodama H. Neurovirulence in cynomolgus monkeys of enterovirus 71 isolated from a patient with hand, foot and mouth disease. Arch Virol 1978;56:257-61.
  55. Hashimoto I, Hagiwara A. Pathogenicity of a poliomyelitis-like disease in monkeys infected orally with enterovirus 71: a model for human infection. Neuropathol Appl Neurobiol 1982;8:149-56.
  56. Nagata N, Shimizu H, Ami Y, et al. Pyramidal and extrapyramidal involvement in experimental infection of cynomolgus monkeys with enterovirus 71. J Med Virol 2002;67:207-16.
  57. Zhang Y, Cui W, Liu L, et al. Pathogenesis study of enterovirus 71 infection in rhesus monkeys. Lab Invest 2011;91:1337-50.
  58. Liu L, Zhao H, Zhang Y, et al. Neonatal rhesus monkey is a potential animal model for studying pathogenesis of EV71 infection. Virology 2011;412:91-100.
  59. Arita M, Nagata N, Iwata N, et al. An attenuated strain of enterovirus 71 belonging to genotype a showed a broad spectrum of antigenicity with attenuated neurovirulence in cynomolgus monkeys. J Virol 2007;81:9386-95.
  60. Arita M, Shimizu H, Nagata N, et al. Temperature-sensitive mutants of enterovirus 71 show attenuation in cynomolgus monkeys. J Gen Virol 2005;86(Pt 5):1391-401.
  61. Nagata N, Iwasaki T, Ami Y, et al. Differential localization of neurons susceptible to enterovirus 71 and poliovirus type 1 in the central nervous system of cynomolgus monkeys after intravenous inoculation. J Gen Virol 2004;85(Pt 10):2981-9.