DOI QR코드

DOI QR Code

균일 및 난류 입구조건이 램프 후류 형상 및 성장에 미치는 영향

Effects of Uniform and Turbulent Inflow Conditions on Wake Topology and Vortex Growth Behind a Ramp

  • Lokesh Kalyan Gutti (School of Mechanical Engineering, Pusan National University) ;
  • Mustafa Z. Yousif (School of Mechanical Engineering, Pusan National University) ;
  • Hee-Chang Lim (School of Mechanical Engineering, Pusan National University)
  • 투고 : 2023.05.10
  • 심사 : 2023.07.11
  • 발행 : 2023.07.31

초록

This work is to observe the wake flow generated behind a ramp. We have conducted a large eddy simulation with two ramp models having different heights with two different inflow conditions. Reynolds number based on the height of the large ramp (LR) and small ramp (SR) are Reh = 2.8×104 and 1.4×104 respectively. The wake flow visualization shows the formation of streamwise counter-rotating vortices pairs at the downstream of the obstacle. These primary vortices are stretched and lifted up when moving downstream. In order to observe the effect of the inflow condition on the wake transition, two different inlet flow conditions are given on the inlet section as an inlet boundary condition. Induced counter-rotating vortices pairs due to sharp-edged triangular ramp obstacles are developed and propagated downstream. In the result, the large ramp shows a more complicated wake structure of the boundary layer than the small ramp.

키워드

과제정보

이 논문은 2021년도 정부(산업통상자원부)의 재원으로 한국에너지기술평가원의 지원(20214000000140, 청정에너지 융합 발전 융합대학원과 2019년도 정부(교육부)의 재원으로 2019(한국연구재단)의 지원을 받아 수행된 연구임(2019R1I1A3A01058576, 공학기술기반의 격리챔버 내 극한압력 생성 및 다물리해석)

참고문헌

  1. X. Dong, Y. Chen, G. Dong, and Y. Liu, "Study on wake structure characteristics of a slotted micro-ramp with large-eddy simulation," Fluid Dyn. Res., vol. 49, no. 3, p. 035507, Apr. 2017. 
  2. Q. Ye, F. F. J. Schrijer, and F. Scarano, "Boundary layer transition mechanisms behind a micro-ramp," J. Fluid Mech., vol. 793, pp. 132-161, Apr. 2016.  https://doi.org/10.1017/jfm.2016.120
  3. Y. Yan, L. Chen, Q. Li, and C. Liu, "Numerical study of micro-ramp vortex generator for supersonic ramp flow control at Mach 2.5," Shock Waves, vol. 27, no. 1, pp. 79-96, Jan. 2017.  https://doi.org/10.1007/s00193-016-0633-4
  4. F. Avallone, F. F. J. Schrijer, and G. Cardone, "Infrared thermography of transition due to isolated roughness elements in hypersonic flows," Phys. Fluids, vol. 28, no. 2, p. 024106, Feb. 2016. 
  5. M. Zhao, Y. Bian, J. Xu, and T. Ye, "Large eddy simulation of film cooling with different upstream obstacles," Int. J. Therm. Sci., vol. 161, p. 106722, Mar. 2021. 
  6. M. S. Acarlar and C. R. Smith, "A study of hairpin vortices in a laminar boundary layer. Part 1. Hairpin vortices generated by a hemisphere protuberance," J. Fluid Mech., vol. 175, pp. 1-41, Feb. 1987.  https://doi.org/10.1017/S0022112087000272
  7. X. DaWen, Z. Chen, J. XiaoHai, and F. BaoChun, "Numerical investigations on the wake structures of micro-ramp and micro-vanes," Fluid Dyn. Res., vol. 4, p. 5505, Feb. 2014. 
  8. X. Dong, Y. Yan, Y. Yang, G. Dong, and C. Liu, "Spectrum study on unsteadiness of shock wave-vortex ring interaction," Phys. Fluids, vol. 30, p. 056101, May 2018. 
  9. Y. Yan, C. Chen, X. Wang, and C. Liu, "LES and analyses on the vortex structure behind supersonic MVG with turbulent inflow," Appl. Math. Model., vol. 38, no. 1, pp. 196-211, Jan. 2014.  https://doi.org/10.1016/j.apm.2013.05.048
  10. P. L. Blinde, R. A. Humble, B. W. van Oudheusden, and F. Scarano, "Effects of micro-ramps on a shock wave/turbulent boundary layer interaction," Shock Waves, vol. 19, no. 6, pp. 507-520, Dec. 2009.  https://doi.org/10.1007/s00193-009-0231-9
  11. Y. Yan, Q. Li, C. Liu, A. Pierce, F. Lu, and P. Lu, "Numerical discovery and experimental confirmation of vortex ring generation by microramp vortex generator," Appl. Math. Model., vol. 36, no. 11, pp. 5700-5708, Nov. 2012.  https://doi.org/10.1016/j.apm.2012.01.015
  12. C. Liu, L. Chen, P. Lu, and X. Liu, "Study on multiple ring-like vortex formation and small vortex generation in late flow transition on a flat plate," Theor. Comput. Fluid Dyn., vol. 27, no. 1, pp. 41-70, Feb. 2013.  https://doi.org/10.1007/s00162-011-0247-5
  13. V. I. Borodulin et al., "Late-Stage Transitional Boundary-Layer Structures. Direct Numerical Simulation and Experiment," Theor. Comput. Fluid Dyn., vol. 15, no. 5, pp. 317-337, May 2002.  https://doi.org/10.1007/s001620100054
  14. Q. Li and C. Liu, "Implicit LES for Supersonic Microramp Vortex Generator: New Discoveries and New Mechanisms," Model. Simul. Eng., vol. 2011, p. e934982, Apr. 2011. 
  15. C. Meneveau and J. Katz, "Scale-Invariance and Turbulence Models for Large-Eddy Simulation," Annu. Rev. Fluid Mech., vol. 32, no. 1, pp. 1-32, 2000.  https://doi.org/10.1146/annurev.fluid.32.1.1
  16. D. Razafindralandy, A. Hamdouni, and M. Oberlack, "Analysis and development of subgrid turbulence models preserving the symmetry properties of the Navier-Stokes equations," Eur. J. Mech. - BFluids, vol. 26, no. 4, pp. 531-550, Jul. 2007.  https://doi.org/10.1016/j.euromechflu.2006.10.003
  17. F. Nicoud and F. Ducros, "Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor," Flow Turbul. Combust., vol. 62, no. 3, pp. 183-200, Sep. 1999.  https://doi.org/10.1023/A:1009995426001
  18. M. Z. Yousif and H. Lim, "Improved delayed detached-eddy simulation and proper orthogonal decomposition analysis of turbulent wake behind a wall-mounted square cylinder," AIP Adv., vol. 11, no. 4, p. 045011, Apr. 2021. 
  19. Z. Sun, "Micro Ramps in Supersonic Turbulent Boundary Layers: An experimental and numerical study," 2014. 
  20. H. Belkhou, S. Russeil, T. Dbouk, M. Mobtil, D. Bougeard, and N.-Y. Francois, "Large Eddy Simulation of boundary layer transition over an isolated ramp-type micro roughness element," Int. J. Heat Fluid Flow, vol. 80, p. 108492, Dec. 2019. 
  21. S. Lee, E. Loth, N. Georgiadis, and J. DeBonis, "Effect of Mach Number on Flow Past Micro-Ramps," in 39th AIAA Fluid Dynamics Conference, American Institute of Aeronautics and Astronautics, 2009. 
  22. P. L. Van Gent, B. W. Van Oudheusden, and F. F. J. Schrijer, "Determination of mean pressure from PIV in compressible flows using the Reynolds-averaging approach," Exp. Fluids, vol. 59, no. 3, p. 41, Mar. 2018. 
  23. C. D. Argyropoulos and N. C. Markatos, "Recent advances on the numerical modelling of turbulent flows," Appl. Math. Model., vol. 39, no. 2, pp. 693-732, Jan. 2015.  https://doi.org/10.1016/j.apm.2014.07.001