References
- Abouelregal, A.E., Sedighi, H.M. and Eremeyev, V.A. (2023), "Thermomagnetic behavior of a semiconductor material heated by pulsed excitation based on the fourth-order MGT photothermal model", Continuum Mech. Thermodyn., 35(1), 81-102. https://doi.org/10.1007/s00161-022-01170-z.
- Akbas, S.D. (2022), "Moving-load dynamic analysis of AFG beams under thermal effect", Steel Compos. Struct., 42(5), 649-655. https://doi.org/10.12989/scs.2022.42.5.649.
- Alazzawy, W.I. (2009), "Analytical solution for buckling of laminated conical shells", Al-Nahrain J. Eng. Sci., 12(2), 129-146.
- Alimoradzadeh, M. and Akbas, S.D. (2022), "Nonlinear dynamic behavior of functionally graded beams resting on nonlinear viscoelastic foundation under moving mass in thermal environment", Struct. Eng. Mech., 81(6), 705-714. https://doi.org/10.12989/sem.2022.81.6.705.
- Al-Osta, M.A. (2022a), "An exponential-trigonometric quasi-3D HSDT for wave propagation in an exponentially graded plate with microstructural defects", Compos. Struct., 297, 115984. https://doi.org/10.1016/j.compstruct.2022.115984
- Al-Osta, M.A. (2022b), "Wave propagation investigation of a porous sandwich FG plate under hygrothermal environments via a new first-order shear deformation theory", Steel Compos. Struct., 43(1), 117-127. https://doi.org/10.12989/scs.2022.43.1.117.
- Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
- Azandariani, M.G., Gholami, M. and Nikzad, A. (2022), "Eringen's nonlocal theory for non-linear bending analysis of BGF Timoshenko nanobeams", Adv. Nano Res., 12(1), 37-47. https://doi.org/10.12989/anr.2022.12.1.037.
- Baghani, M., Jafari-Talookolaei, R.A. and Salarieh, H. (2011), "Large amplitudes free vibrations and post-buckling analysis of unsymmetrically laminated composite beams on nonlinear elastic foundation", Appl. Math. Model., 35(1), 130-138. https://doi.org/10.1016/j.apm.2010.05.012.
- Balci, M., Nalbant, M.O., Kara, E. and Gundogdu, O. (2014), "Free vibration analysis of a laminated composite beam with various boundary conditions", Int. J. Autom. Mech. Eng., 9, 1734, http://doi.org/10.15282/ijame.9.2013.22.0144.
- Bochkareva, S.A. and Lekomtsev, S.V. (2022), "Natural vibrations and hydroelastic stability of laminated composite circular cylindrical shells", Struct. Eng. Mech., 81(6), 769-780. https://doi.org/10.12989/sem.2022.81.6.769.
- Brunelle, E.J. (2012), "Stress redistribution and instability of rotating beams and disks", AIAA J., 9(4), 758-759. https://doi.org/10.2514/3.6270.
- Chinnapandi, L.B.M., Pitchaimani, J. and Eltaher, M.A. (2022), "Vibro-acoustics of functionally graded porous beams subjected to thermo-mechanical loads", Steel Compos. Struct., 44(6), 829-843. https://doi.org/10.12989/scs.2022.44.6.829.
- Cho, J.R. (2022a), "Nonlinear bending analysis of functionally graded CNT-reinforced composite plates", Steel Compos. Struct., 42(1), 23-32. https://doi.org/10.12989/scs.2022.42.1.023.
- Cho, J.R. (2022b), "Thermal buckling analysis of metal-ceramic functionally graded plates by natural element method", Struct. Eng. Mech., 84(6), 723-731. https://doi.org/10.12989/sem.2022.84.6.723.
- Choi, S.H., Heo, I., Kim, J.H., Jeong, H., Lee, J.Y. and Kim, K.S. (2022), "Flexural behavior of post-tensioned precast concrete girder at negative moment region", Comput. Concrete, 30(1),75-84. https://doi.org/10.12989/cac.2022.30.1.075.
- Civalek, O . and Demir, C . (2011), "Bending analysis of microtubules using nonlocal Euler-Bernoulli beam theory", Appl. Math. Model., 35(5), 2053-2067. https://doi.org/10.1016/j.apm.2010.11.004.
- Cuong-Le, T., Ferreira, A.J.M. and Abdel Wahab, M. (2019b), "A refined size-dependent couple stress theory for laminated composite micro-plates using isogeometric analysis", Thin Wall. Struct., 145, 106427. https://doi.org/10.1016/j.tws.2019.106427.
- Cuong-Le, T., Nguyen, K.D., Hoang-Le, M., Sang-To, T., Phan-Vu, P. and Wahab, M.A. (2022a), "Nonlocal strain gradient IGA numerical solution for static bending, free vibration and buckling of sigmoid FG sandwich nanoplate", Physica B: Condens. Matter, 631, 413726. https://doi.org/10.1016/j.physb.2022.413726.
- Cuong-Le, T., Nguyen, K.D., Hoang-Le, M., Sang-To, T., Phan-Vu, P. and Abdel Wahab, M. (2022a), "Nonlocal strain gradient IGA numerical solution for static bending, free vibration and buckling of sigmoid FG sandwich nanoplate", Physica B: Condensed Matter, 631, 413726. https://doi.org/10.1016/j.physb.2022.413726.
- Cuong-Le, T., Nguyen, K.D., Lee, J., Rabczuk, T. and Nguyen-Xuan, H. (2022b), "A 3D nano scale IGA for free vibration and buckling analyses of multi-directional FGM nanoshells", Nanotechnol., 33(6), 065703. https://doi.org/10.1088/1361-6528/ac32f9.
- Cuong-Le, T., Nguyen, K.D., Lee, J., Rabczuk, T. and Nguyen-Xuan, H. (2021a), "A 3D nano scale IGA for free vibration and buckling analyses of multi-directional FGM nanoshells", Nanotechnol., 33(6), 065703. https://doi.org/10.1088/1361-6528/ac32f9.
- Cuong-Le, T., Nguyen, K.D., Nguyen-Trong, N., Khatir, S., Nguyen-Xuan, H. and Abdel-Wahab, M. (2020a), "A three-dimensional solution for free vibration and buckling of annular plate, conical, cylinder and cylindrical shell of FG porous-cellular materials using IGA", Compos. Struct., 259, 113216. https://doi.org/10.1016/j.compstruct.2020.113216.
- Cuong-Le, T., Nguyen, K.D., Nguyen-Trong, N., Khatir, S., Nguyen-Xuan, H. and AbdelWahab, M. (2021b), "A three-dimensional solution for free vibration and buckling of annular plate, conical, cylinder and cylindrical shell of FG porous-cellular materials using IGA", Compos. Struct., 259, 113216. https://doi.org/10.1016/j.compstruct.2020.113216.
- Cuong-Le, T., Nguyen, T.N., Vu, T.H., Khatir, S. and Abdel Wahab, M. (2020b), "A geometrically nonlinear size-dependent hypothesis for porous functionally graded micro-plate", Eng. Comput., 38(2022), 449-460. https://doi.org/10.1007/s00366-020-01154-0.
- Cuong-Le, T., Nguyen, T.N., Vu, T.H., Khatir, S. and AbdelWahab, M. (2022c), "A geometrically nonlinear size-dependent hypothesis for porous functionally graded micro-plate", Eng. Comput., 38 (1), 449-460. https://doi.org/10.1007/s00366-020-01154-0.
- Cuong-Le, T., Tran, L.V., Vu-Huu, T. and Abdel-Wahab, M. (2019a), "The size-dependent thermal bending and buckling analyses of composite laminate microplate based on new modified couple stress theory and isogeometric analysis", Comput. Meth. Appl. Mech. Eng., 350, 337-361. https://doi.org/10.1016/j.cma.2019.02.028.
- Ding, F., Ding, H., He, C., Wang, L. and Lyu, F. (2022), "Method for flexural stiffness of steel-concrete composite beams based on stiffness combination coefficients", Comput. Concrete, 29(3), 127-144. https://doi.org/10.12989/cac.2022.29.3.127.
- Du, M., Liu, J., Ye, W., Yang, F. and Lin, G. (2022), "A new semi-analytical approach for bending, buckling and free vibration analyses of power law functionally graded beams", Struct. Eng. Mech., 81(2), 179-194. https://doi.org/10.12989/sem.2022.81.2.179.
- Fan, L., Kong, D., Song, J., Moradi, Z., Safa, M. and Khadimallah, M.A. (2022), "Optimization dynamic responses of laminated multiphase shell in thermo-electro-mechanical conditions", Adv. Nano Res., 13(1), 29-45. https://doi.org/10.12989/anr.2022.13.1.029.
- Gursky, V., Krot, P., Korendiy, V. and Zimroz, R. (2022), "Dynamic analysis of an enhanced multi-frequency inertial exciter for industrial vibrating machines", Mach., 10(2), 130, https://doi.org/10.3390/machines10020130.
- Hagos, R.W., Choi, G., Sung, H. and Chang, S. (2022), "Substructuring-based dynamic reduction method for vibration analysis of periodic composite structures", Compos. Mater. Eng., 4(1), 43-62 https://doi.org/10.12989/cme.2022.4.1.043.
- Hajianmaleki, M. and Qatu, M.S. (2013), "Vibrations of straight and curved composite beams: A review", Compos. Struct., 100, 218-232. https://doi.org/10.1016/j.compstruct.2013.01.001.
- Huang, X., Shan, H., Chu, W. and Chen, Y. (2022), "Computational and mathematical simulation for the size-dependent dynamic behavior of the high-order FG nanotubes, including the porosity under the thermal effects", Adv. Nano Res., 12(1), 101-115. https://doi.org/10.12989/anr.2022.12.1.101.
- Ibraheem-Majeed, W., Al-Samarraie, S.A. and AL-SAIOR, M. M. (2013), "Vibration control analysis of a smart flexible cantilever beam using smart material", J. Eng., 19(1). 82-95.
- Jweeg, M.J. and Ibraheem-Majeed, W. (2009), "Free vibration analysis solution for laminated truncated conical shells using high orde theory", Proceedings of the 6 th Science Conference of the College of Engineering, University of Baghdad, 3, 208-225.
- Jweeg, M.J., Alnomani, S.N. and Mohammad, S.K. (2020), "Dynamic analysis of a rotating stepped shaft with and without defects", IOP Conf. Ser.: Mater. Sci. Eng., 671(1), 012004. https://doi.org/10.1088/1757-899X/671/1/012004.
- Kargarnovin, M.H., Ahmadian, M.T., Jafari-Talookolaei, R.A. and Abedi, M. (2013), "Semi-analytical solution for the free vibration analysis of generally laminated composite Timoshenko beams with single delamination", Compos. Part B: Eng., 45(1), 587-600. https://doi.org/10.1016/j.compositesb.2012.05.007.
- Khatir, S., Tiachacht, S., Cuong-Le, T, Quoc Bui, T. and Abdel Wahab, M. (2019), "Damage assessment in composite laminates using ANN-PSO-IGA and Cornwell indicator.", Compos. Struct., 230, 111509. https://doi.org/10.1016/j.compstruct.2019.111509.
- Khatir, S., Tiachacht, S., Cuong-Le, T., Ghandourah, E., Mirjalili, S. and Abdel Wahab, M. (2021), "An improved Artificial Neural Network using arithmetic optimization algorithm for damage assessment in FGM composite plates", Compos. Struct., 273, 114287. https://doi.org/10.1016/j.compstruct.2021.114.
- Kim, D.B. (2019), "An approach for composing predictive models from disparate knowledge sources in smart manufacturing environments", J. Intel. Manuf., 30(4), 1999-2012. https://doi.org/10.1007/s10845-017-1366-7.
- Kim, W., Argento, A. and Scott, R.A. (1999), "Free vibration of a rotating tapered composite Timoshenko shaft", J. Sound Vib., 226(1), 125-147. https://doi.org/10.1006/jsvi.1999.2289.
- Kumar, H.S.N. and Kattimani, S. (2022), "Nonlinear analysis of two-directional functionally graded doubly curved panels with porosities", Struct. Eng. Mech., 82(4), 477-490. https://doi.org/10.12989/sem.2022.82.4.477.
- Lazarus, A., Prabel, B. and Combescure, D. (2010), "A 3D finite element model for the vibration analysis of asymmetric rotating machines", J. Sound Vib., 329(18), 3780-3797. https://doi.org/10.1016/j.jsv.2010.03.029.
- Lee, W.J., Xia, K., Denton, N.L., Ribeiro, B. and Sutherland, J.W. (2021), "Development of a speed invariant deep learning model with application to condition monitoring of rotating machinery", J. Intel. Manuf., 32(2), 393-406. https://doi.org/10.1007/s10845-020-01578-x.
- Liu, Y., Wang, X., Liu, L., Wu, B. and Yang, Q. (2022), "On the forced vibration of high-order functionally graded nanotubes under the rotation via intelligent modelling", Adv. Nano Res., 13(1), 47-61. https://doi.org/10.12989/anr.2022.13.1.047.
- Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of FGM beams", Struct. Eng. Mech., 69(4), 427-437. https://doi.org/10.12989/sem.2019.69.4.427.
- Madenci, E. and Ozutok, A. (2020), "Variational approximate for high order bending analysis of laminated composite plates", Struct. Eng. Mech., 73(1), 97-108. https://doi.org/10.12989/sem.2020.73.1.097.
- Man, Y. (2022), "On the dynamic stability of a composite beam via modified high-order theory", Comput. Concrete, 30(2), 151-164. https://doi.org/10.12989/cac.2022.30.2.151.
- Mehdi, H., Upadhyay, R., Mehra, R. and Singhal, A. (2014), "Modal analysis of composite beam reinforced by aluminium-synthetic fibers with and without multiple cracks using ansys", Int. J. Mech. Eng. (IJME), 4(2), 70-80.
- Motaghian, S.E., Mofid, M. and Alanjari, P. (2011), "Exact solution to free vibration of beams partially supported by an elastic foundation", Scientia Iranica, 18(4), 861-866. https://doi.org/10.1016/j.scient.2011.07.013.
- Mula, S.N., Leite, A.M.S. and Loja, M.A.R. (2022), "Analytical and numerical study of failure in composite plates", Compos. Mater. Eng., 4(1), 23-41. https://doi.org/10.12989/cme.2022.4.1.023.
- Osman, M.Y. and Elmardi Suleiman, O.M. (2017), "Free vibration analysis of laminated composite beams using finite element method", Int. J. Eng. Res. Adv. Technol. (IJERAT), 3(2), 5-22. https://doi.org/10.7324/IJERAT.2017.3138.
- Pavlenko, I.V., Simonovskiy, V.I. and Demianenko, M.M. (2017), "Dynamic analysis of centrifugal machines rotors supported on ball bearings by combined application of 3D and beam finite element models", IOP Conf. Ser.: Mater. Sci. Eng., 233(1), 012053. https://doi.org/10.1088/1757-899X/233/1/0120532019.
- Polat, A. and Kaya, Y. (2022), "Analysis of discontinuous contact problem in two functionally graded layers resting on a rigid plane by using finite element method", Comput. Concrete, 29(4), 247-253. https://doi.org/10.12989/cac.2022.29.4.247.
- Qin, Y., Li, C., Cao, F. and Chen, H. (2020), "A fault dynamic model of high-speed angular contact ball bearings", Mech. Mach. Theory, 143, 103627. https://doi.org/10.1016/j.mechmachtheory.2019.103627.
- Rezaiee-Pajand, M., Sobhani, E. and Masoodi, A.R. (2022), "Vibrational behavior of exponentially graded joined conical-conical shells", Steel Compos. Struct., 43(5), 603-623. https://doi.org/10.12989/scs.2022.43.5.603.
- Sayyad, A.S. and Ghugal, Y.M. (2017), "Bending, buckling and free vibration of laminated composite and sandwich beams, A critical review of literature", Compos. Struct., 171, 486-504. https://doi.org/10.1016/j.compstruct.2017.03.053.
- Selmi, A. (2020), "Exact solution for nonlinear vibration of clamped-clamped functionally graded buckled beam". Smart Struct. Syst., 26(3), 361-371. https://doi.org/10.12989/sss.2020.26.3.361.
- Squarcella, N., Firrone, C.M., Allara, M. and Gola, M. (2014), "The importance of the material properties on the burst speed of turbine disks for aeronautical applications", Int. J. Mech. Sci., 84, 73-83. https://doi.org/10.1016/j.ijmecsci.2014.04.007.
- Tran, M.T. and Cuong-Le, T. (2022), "A nonlocal IGA numerical solution for free vibration and buckling analysis of porous sigmoid functionally graded (P-SFGM) nanoplate", Int. J. Struct. Stab. Dyn., 22(16), 2250193. https://doi.org/10.1142/S0219455422501930.
- Tran, T.M. and Cuong-Le, T. (2022), "A nonlocal iga numerical solution for free vibration and buckling analysis of Porous Sigmoid Functionally Graded (P-SFGM) nanoplate", Int. J. Struct. Stab. Dyn., 22(16), 2250193. https://doi.org/10.1142/S0219455422501930.
- Wieczorek, A.N., Konieczny, L., Burdzik, R., Wojnar, G., Filipowicz, K. and Kuczaj, M. (2022), "A complex vibration analysis of a drive system equipped with an innovative prototype of a flexible torsion clutch as an element of pre-implementation testing", Sensor., 22(6), 2183. https://doi.org/10.3390/s22062183.
- Wu, X. and Fang, T. (2022), "Intelligent computer modeling of large amplitude behavior of FG inhomogeneous nanotubes", Adv. Nano Res., 12(6), 617-627. https://doi.org/10.12989/anr.2022.12.6.617
- Yahea, H.T. and Ibraheem-Majeed, W. (2021), "Free vibration of laminated composite plates in thermal environment using a simple four variable plate theory", Compos. Mater. Eng., 3(3), 179-199. https://doi.org/10.12989/cme.2021.3.3.179.
- Yang, Y., Zheng, H., Yin, J., Xu, M. and Chen, Y. (2020), "Refined composite multivariate multiscale symbolic dynamic entropy and its application to fault diagnosis of rotating machine", Measure., 151, 107233. https://doi.org/10.1016/j.measurement.2019.107233.
- Yaylaci, M., Abanoz, M., Yaylaci, E.U., Olmez, H., Sekban, D.M. and Birinci, A. (2022), "The contact problem of the functionally graded layer resting on rigid foundation pressed via rigid punch", Steel Compos. Struct., 43(5), 661-672. https://doi.org/10.12989/scs.2022.43.5.661.
- Yildirim, S. and Tutuncu, N. (2018), "On the inertio-elastic instability of variable-thickness functionally-graded disks", Mech. Res. Commun., 91, 1-6. https://doi.org/10.1016/j.mechrescom.2018.04.011.
- Yildirim, S. and Tutuncu, N. (2019), "Effect of magneto-thermal loads on the rotational instability of heterogeneous rotors", AIAA J., 57(5), 2069-2074. https://doi.org/10.2514/1.J058124.
- Zahi, R., Refassi, K. and Habib, A. (2018), "Dynamic calculation of a tapered shaft rotor made of composite material", Adv. Aircraft Spacecraft Sci., 5(1), 51-71. https://doi.org/10.12989/aas.2018.5.1.051.
- Zenzen, R., Khatir, S., Belaidi, I., Cuong-Le, T. and Abdel Wahab, M. (2020), "A modified transmissibility indicator and Artificial Neural Network for damage identification and quantification in laminated composite structures", Compos. Struct., 248, 112497. https://doi.org/10.1016/j.compstruct.2020.112497.
- Zhu, F.Y., Lim, H.J., Choi, H. and Yun, G.J. (2022), "A hierarchical micromechanics model for nonlinear behavior with damage of SMC composites with wavy fiber", Compos. Mater. Eng., 4(1), 1-21. https://doi.org/10.12989/cme.2022.4.1.001.