References
- ABAQUS CAE (2021), Standard User's Manual, Version 2021.
- Abate, G. and Massimino, M.R. (2017), "Parametric analysis of the seismic response of coupled tunnel-soil-aboveground building systems by numerical modelling", Bull. Earthq. Eng., 1-5(1), 443-467. https://doi.org/10.1007/s10518-016-9975-7.
- Abdel Raheem, S.E., Ahmed, M.M. and Alazrak, T.M. (2015), "Evaluation of soil-foundation-structure interaction effects on seismic response demands of multi-story MRF buildings on raft foundations", Int. J. Adv. Struct. Eng. (IJASE), 7, 11-30. https://doi.org/10.1007/s40091-014-0078-x.
- Bahuguna, A. and Firoj, M. (2021), "Nonlinear seismic performance of nuclear structure with soil-structure interaction", Iran. J. Sci. Technol.-Trans. Civil Eng., 46(4), 2975-2988. https://doi.org/10.1007/s40996-021-00728-2.
- Belkhir, H., Sbartai, B., Filali, K. and Messioud, S. (2022), "Linear equivalent seismic response of a surface foundation excited by an SH Harmonic wave", Eur. J. Environ. Civil Eng., 1-18. https://doi.org/10.1080/19648189.2022.2162978.
- Bolisetti, C. (2015), "Site response, soil-structure interaction and structure-soil-structure interaction for performance assessment of buildings and nuclear structures", State University of New York at Buffalo.
- Celebi, E., Firat, S. and Cankaya, I. (2006), "The evaluation of impedance functions in the analysis of foundations vibrations using boundary element method", Appl. Math. Comput., 173(1), 636-667. https://doi.org/10.1016/j.amc.2005.04.006.
- Celebi, E., Goktepe, F. and Karahan, N. (2012), "Non-linear finite element analysis for prediction of seismic response of buildings considering soil-structure interaction", Nat. Hazard. Earth Syst. Sci., 12(11), 3495-3505. https://doi.org/10.5194/nhess-12-3495-2012.
- EC8-2004 (2004), Eurocode 8: Design of Structures for Earthquake Resistance, Part 5: Foundation, Retaining Structures and Geotechnical Aspects.
- Farghaly, A.A. and Ahmed, H.H. (2013), "Contribution of soil-structure interaction to seismic response of buildings", KSCE J. Civil Eng., 17(5), 959-971. https://doi.org/10.1007/s12205-013-0261-9.
- Filali, K. and Sbartai, B. (2017), "A comparative study between simplified and nonlinear dynamic methods for estimating liquefaction potential", J. Rock Mech. Geotech. Eng., 9, 955-966. https://doi.org/10.1016/j.jrmge.2017.05.008.
- Forcellini, D. (2021), "Analytical fragility curves of shallow-founded structures subjected to Soil-Structure Interaction (SSI) effects", Soil Dyn. Earthq. Eng., 141, 106487. https://doi.org/10.1016/j.soildyn.2020.106487.
- Pecker, A. and Chatzigogos, C.T. (2010), "Non linear soil structure interaction: Impact on the seismic response of structures", Eds. Garevski, M., Ansal, A., Earthquake Engineering in Europe, Geotechnical, Geological, and Earthquake Engineering, Vol 17. Dordrecht. https://doi.org/10.1007/978-90-481-9544-2_4.
- Guellil, M.E., Harichane, Z. and Celebi, A. (2019), "Comparison between non-linear and stochastic methods for dynamic SSI problems", On Significant Applications of Geophysical Methods: Proceedings of the 1st Springer Conference of the Arabian Journal of Geosciences (CAJG-1), Tunisia. https://doi.org/10.1007/978-3-030-01656-2_43.
- Guellil, M.E., Harichane, Z. and Celebi, E. (2020), "Seismic codes based equivalent nonlinear and stochastic soil structure interaction analysis", Studia Geotechnica et Mechanica, 43(1), 1-14. https://doi.org/10.2478/sgem-2020-0007.
- Guellil, M.E., Harichane, Z., Berkane, H.D. and Sadouki, A. (2017), "Soil and structure uncertainty effects on the soil foundation structure dynamic response", Earthq. Struct., 12(2), 153-163. https://doi.org/10.12989/eas.2017.12.2.153.
- Hardin, B. and Drnevich, V. (1972), "Shear modulus and damping in soils: Design equations and curves", J. Soil Mech. Found. Div., ASCE, 98(7), 667e92. https://doi.org/10.1061/JSFEAQ.0001760.
- Harichane, Z., Guellil, M.E. and Gadouri, H. (2018), "Benefits of probabilistic soil-Foundation-Structure interaction analysis", Int. J. Geotech. Earthq. Eng., 9(1), 42-64. https://doi.org/10.4018/IJGEE.2018010103.
- Karabork, T., Deneme, I.O. and Bilgehan, R.P. (2014), "A comparison of the effect of SSI on base isolation systems and fixed-base structures for soft soil", Geomech. Eng., 7(1), 87-103. https://doi.org/10.12989/gae.2014.7.1.087.
- Lesgidis, N., Sextos, A. and Kwon, O.S. (2017), "Influence of frequency-dependent soil-structure interaction on the fragility of R/C bridges", Earthq. Eng. Struct. Dyn., 46(1), 139-158. https://doi.org/10.1002/eqe.2778.
- Martakis, P., Aguzzi, G., Dertimanis, V.K., Chatzi, E.N. and Colombi, A. (2021), "Nonlinear periodic foundations for seismic protection: Practical design, realistic evaluation and stability considerations", Soil Dyn. Earthq. Eng., 150, 106934. https://doi.org/10.1016/j.soildyn.2021.106934.
- Massing G. (1926), "Eigenspannungen und verfestigungbeim messing", Proceedings of the 2nd International Congress of Applied Mechanics, 332-335.
- Mylonakis, G. and Gazetas, G. (2000), "Seismic soil-structure interaction: Beneficial or detrimental", J. Earthq. Eng., 4(3), 277-301. https://doi.org/10.1080/13632460009350372.
- Mylonakis, G., Nikolaou, S. and Gazetas, G. (2006), "Footings under seismic loading: Analysis and design issues with emphasis on bridge foundations", Soil Dyn. Earthq. Eng., 26(9), 824-853. https://doi.org/10.1016/j.soildyn.2005.12.005.
- NTC (2008), D.M. 14/01/08, New Technical Standards for Buildings, Official Journal of the Italian Republic, January. (in Italian)
- Pais, A., Kausel, E. and Eirgirreerirlg, C. (1988), "Approximate formulas for dynamic stiffnesses of rigid foundations", Soil Dyn. Earthq. Eng., 7, 213-227. https://doi.org/10.1016/S0267-7261(88)80005-8.
- Park, J.H., Choo, J.F. and Cho, J.R. (2013), "Dynamic soil-structure interaction analysis for complex soil profiles using unaligned mesh generation and nonlinear modeling approach", KSCE J. Civil Eng., 17(4), 753-762. https://doi.org/10.1007/s12205-013-0135-1.
- Petridis, C. and Pitilakis, D. (2020), "Fragility curve modifiers for reinforced concrete dual buildings including nonlinear site effects and soil-structure interaction", Earthq. Spectra, 36(4), 1930-1951. https://doi.org/10.1177/8755293020919430.
- Petridis, C. and Pitilakis, D. (2021), "Large-scale seismic risk assessment integrating nonlinear soil behavior and soil-structure interaction effects", Bull. Earthq. Eng., 19(15), 6423-6441. https://doi.org/10.1007/s10518-021-01237-3.
- Pitilakis, D., Moderessi-Farahmand-Razavi, A. and Clouteau, D. (2013), "Equivalent-linear dynamic impedance functions of surface foundations", J. Geotech. Geoenviron. Eng., 139(7), 1130-1139. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000829.
- Rambert, W. and Osgood, W.R. (1943), "Description of stress-strain curves by three parameters", Technical Note, National Advisory Committee for Aeronautics, Washington DC.
- Raychowdhury, P. (2011), "Seismic response of low-rise steel moment-resisting frame (SMRF) buildings incorporating nonlinear soil-structure interaction (SSI)", Eng. Struct., 33(3), 958-967. https://doi.org/10.1016/j.engstruct.2010.12.017.
- Renz, D., Moderessi-Farahmand-Razavi, A. and Clouteau, D. (2013), "Equivalent-linear dynamic impedance functions of surface foundations", J. Geotech. Geoenviron. Eng., 139(7), 1130-1139. https://doi.org/10.1061/(asce)gt.1943-5606.0000829.
- Robert, D.J., Soga, K. and Britto, A.M. (2015), "Soil constitutive models to simulate pipeline-soil interaction behaviour", International Conference on Geotechnical Engineering ICGE Colombo, August.
- Sbartai, B. (2016), "Dynamic interaction of two adjacent foundations embedded in a viscoelastic soil", Int. J. Struct. Stab. Dyn., 16(03), 1450110. https://doi.org/10.1142/S0219455414501107.
- Sbartai, B. (2018), "Dynamic impedance functions of a square foundation estimated with an equivalent linear approach", Sustain. Civil Infrastr., 2, 460-470. https://doi.org/10.1007/978-3-319-61914-9_35.
- Sbartai, B. (2020), "A polynomial mathematical tool for foundation-soil-foundation interaction", Geomech. Eng., 23(6), 547-560. https://doi.org/10.12989/gae.2020.23.6.547.
- Sbartai, B. and Boumekik, A. (2008), "Ground vibration from rigid foundation by BEM-TLM", ISET J. Earthq. Technol., 45(3-4), 65-78.
- Sbartai, B. and Filali, K. (2012), "CALDYNASOIL: Software of seismic response and liquefaction potential of a soil deposit", 15th World Conference on Earthquake Engineering, Vol. 24, Lisbon, Portugal, September.
- Sekhri, K. (2021), "Analyse dynamique non lineaire d'un pieu isole et groupe de pieux sollicites par des charges sismiques", Universite Batna, Mostefa Ben Boulaid Faculte de Technologie.
- Sobhi, P. and Far, H. (2021), "Impact of structural pounding on structural behaviour of adjacent buildings considering dynamic soil-structure interaction", Bull. Earthq. Eng., 20(7), 3515-3547. https://doi.org/10.1007/s10518-021-01195-w.
- Truty, A. (2018), "On consistent nonlinear analysis of soil - structure interaction problems", Studia Geotechnica et Mechanica, 40(2), 86-95. https://doi.org/10.2478/sgem-2018-0019.
- Wolf, J.P. (1985), Dynamic Soil-Structure Interaction (Prentice-Hall International Series in Civil Engineering and Engineering Mechanics), Prentice Hall, Switzerland.
- Wolf, J.P. and Preisig, M. (2003), "Dynamic stiffness of foundation embedded in layered halfspace based on wave propagation in cones", Earthq. Eng. Eng. Vib., 32(7), 1075-1098. https://doi.org/10.1002/eqe.263
- Zhidong, G., Xu, Z., Mi, Z., Xiuli, D., Junjie, W. and Pengcheng, L. (2021), "Efficient seismic analysis for nonlinear soil-structure interaction with a thick soil layer", Earthq. Eng. Eng. Vib., 20(3), 553-565. https://doi.org/10.1007/s11803-021-2038-3.