DOI QR코드

DOI QR Code

Performance control analysis of concrete-filled steel tube sepa-rated spherical joint wind power tower

  • Yang Wen (School of Civil Engineering, Inner Mongolia University of Science and Technology) ;
  • Guangmao Xu (School of Civil Engineering, Inner Mongolia University of Science and Technology) ;
  • Xiazhi Wu (School of Civil Engineering, Inner Mongolia University of Science and Technology) ;
  • Zhaojian Li (School of Civil Engineering, Inner Mongolia University of Science and Technology)
  • Received : 2022.11.28
  • Accepted : 2023.06.02
  • Published : 2023.07.25

Abstract

In this study, to explore the working performance of the CFST split spherical node wind power tower, two groups of CFST split spherical joint plane towers with different web wall thicknesses and a set of space systems were analyzed. The tower was subjected to a low-cycle repeated load test, and the hysteresis and skeleton curves were analyzed. ABAQUS finite element simulation was used for verification and comparison, and on this basis parameter expansion analysis was carried out. The results show that the failure mode of the wind power tower was divided into weld tear damage between belly bar, high strength bolt thread damage and belly rod flexion damage. In addition, increasing the wall thickness of the web member could render the hysteresis curve fuller. Finally, the bearing capacity of the separated spherical node wind power tower was high, but its plastic deformation ability was poor. The ultimate bearing capacity and ductility coefficient of the simulated specimens are positively correlated with web diameter ratio and web column stiffness ratio. When the diameter ratio of the web member was greater than 0.13, or the stiffness ratio γ of the web member to the column was greater than 0.022, the increase of the ultimate bearing capacity and ductility coefficient decreased significantly. In order to maximize the overall mechanical performance of the tower and improve its economy, it was suggested that the diameter ratio of the ventral rod be 0.11-0.13, while the stiffness ratio γ should be 0.02-0.022.

Keywords

Acknowledgement

The studies in this paper are financially supported by the National Natural science Foundation of china (grant no. 51768056), the Youth Science and Technology Talents Project of Inner Mongolia Autonomous Region (grant no. NJYT22068) and the Natural Science Foundation of Inner Mongolia Autonomous Region (grant no. 2019MS05038).

References

  1. Bazeos, N., Hatzigeorgiou, G.D. and Hondros, I.D. (2002), "Static, seismic and stability analyses of a prototype wind turbine steel tower", J. Eng. Struct., 24, 1015-1025. https://doi.org/10.1016/S0141-0296(02)00021-4.
  2. Cakiroglu, C., Islam, K., Bekdas, G., Isikdag, U. and Mangalathu, S. (2022), "Explainable machine learning models for predicting the axial compression capacity of concrete filled steel tubular columns", Constr. Build. Mater., 356, 129227. https://doi.org/10.1016/j.conbuildmat.2022.129227.
  3. Deng, H., Li, F., Cai, Q., Dong, J. and Fu, P. (2017), "Experimental and numerical analysis on the slope change joint of a quartet steel-tube-column transmission tower", Thin Wall. Struct., 119, 572-585. https://doi.org/10.1016/j.tws.2017.07.006.
  4. Dimopoulos, C. and Gantes, C. (2012), "Experimental investigation of buckling of wind turbine tower cylindrical shells with opening and stiffening under bending", Thin Wall. Struct., 54, 140-155. https://doi.org/10.1016/j.tws.2012.02.011.
  5. Feather, W.G., Lim, H. and Knezevic, M. (2020), "A numerical study into element type and mesh resolution for crystal plasticity finite element modeling of explicit grain structures", Comput. Mech., 67, 33-55. https://doi.org/10.1007/s00466-020-01918-x.
  6. Gkantou, M. and Baniotopoulos, C. (2017), "On the structural response of a tall hybrid onshore wind turbine tower", J. Procedia Eng., 199, 3200-3205. https://doi.org/10.1016/j.proeng.2017.09.535.
  7. Guler, S., Copur, A. and Aydogan, M. (2013), "Axial capacity and ductility of circular UHPC-filled steel tube columns", Mag. Concrete Res., 65(15), 898-905. https://doi.org/10.1680/macr.12.00211.
  8. Guler, S., Copur, A. and Aydogan, M. (2014), "A comparative study on square and circular high strength concrete-filled steel tube columns", Adv. Steel Constr., 10(2), 234-247. https://doi.org/10.18057/IJASC.2014.10.2.7
  9. Guler, S., Lale, E. and Aydogan, M. (2013), "Non-linear analysis of steel fiber reinforced concrete-filled steel tube columns", Proc. Inst. Civil Eng.-Struct. Build., 166(6), 298-306. https://doi.org/10.1680/stbu.11.00070.
  10. Guler, S., Yavuz, D. and Aydin, M. (2019), "Hybrid fiber reinforced concrete-filled square stub columns under axial compression", Eng. Struct., 198, 109504.
  11. Hamed, S., Anooshe, R.J. and Xu, S.Q. (2018), "Design optimization and additive manufacturing of nodes in grids hell structures", J. Eng. Struct., 160(4), 161-170. https://doi.org/10.1016/j.engstruct.2018.01.036.
  12. Han, L.H. (2016), Concrete-filled Steel Tube Structures-Theory and Practice, Third Edition, Science Press, Beijing. (in Chinese)
  13. He, L., Zhao, Y. and Lin, S. (2018), "Experimental study on axially compressed circular CFST columns with improved confinement effect", J. Constr. Steel Res., 140, 74-81. https://doi.org/10.1016/j.jcsr.2017.10.025.
  14. Huang, X.G., Li, B.K. and Zhou, X.H. (2021), "Geometric optimisation analysis of Steel-Concrete hybrid wind turbine towers", Struct., 36(8), 1-13. https://doi.org/10.1016/j.istruc.2021.08.036.
  15. JGJ/T101-2015 (2015), Building Seismic Test Code, China Planning Press, Beijing.
  16. Jiao, H., Fidelis, M. and Zhao, X.L. (2013), "Fatigue behavior of very high strength (VHS) circular steel tube to plate T-joints under in-plane bending", Thin Wall. Struct., 68, 106-112. https://doi.org/10.1016/j.tws.2013.03.006.
  17. Ju, Y.Z., Li, J.Y. and Wang, D.H. (2018), "Study of the ultimate load capacity of K-Type tube-gusset plate connections", J. Int. J. Steel Struct., 18(2), 596-607. https://doi.org/10.1007/s13296-018-0015-0.
  18. Li, B., Qiao, M. and Gao, C.Y. (2012), "Static behavior study for latticed concrete-filled steel tubular wind turbine tower joints", Appl. Mech. Mater., 166-169, 553-558. https://doi.org/10.4028/www.scientific.net/amm.166-169.553.
  19. Li, B., Zhao, Z.Z. and Cheng, Y.C. (2020), "Comparative analysis of mechanical properties of concrete-filled steel tubular lattice wind turbine tower joints", J. Chongqing Univ. Technol. (Nat. Sci.), 34(07), 108-113.
  20. Li, J., Wang, G., Li, Z., Yang, S., Chong, W.T. and Xiang, X. (2020), "A review on development of offshore wind energy conversion system", Int. J. Energy Res., 44(12), 9283-9297. https://doi.org/10.1002/er.5751.
  21. Liu, W. (2005), "Research on mechanism of concrete-filled steel tubes subjected to local compression", D. Fuzhou University. (in Chinese)
  22. Liu, W.J. (2013), "Safety performance evaluation of wind power tower under wind load", Appl. Mech. Mater., 437, 281-285. https://doi.org/10.4028/www.scientific.net/amm.437.281.
  23. Musa, I.A. and Mashiri, F.R. (2019), "Parametric study and equations of the maximum SCF for concrete filled steel tubular T-joints under in-plane and out-of-plane bending", Thin Wall. Struct., 135, 245-268. https://doi.org/10.1016/j.tws.2018.11.017.
  24. Musa, I.A. and Mashiri, F.R. (2019), "Stress concentration factor in concrete-filled steel tubular K-joints under balanced axial load", Thin Wall. Struct., 139, 186-195. https://doi.org/10.1016/j.tws.2019.03.003.
  25. Negm, H.M. and Malawi, K.Y. (2000), "Structural design optimization of wind turbine towers", J. Comput. Struct., 74(6), 649-666. https://doi.org/10.1016/s0045-7949(99)00079-6.
  26. Okamoto, Y. and Nakamura, S. (2011), "Static and seismic studies on steel/concrete hybrid towers for multi-span cable-stayed bridges", J. Constr. Steel Res., 67(2), 203-210. https://doi.org/10.1016/j.jcsr.2010.08.008.
  27. Sakai, Y., Hosaka, T., Isoe, A., Ichikawa, A. and Mitsuki, K. (2004), "Experiments on concrete filled and reinforced tubular K-joints of truss girder", J. Constr. Steel Res., 60(3), 683-699. https://doi.org/10.1016/s0143-974x(03)00136-6.
  28. Shaikha, A.S., Wang, L. and Parol, J. (2021), "Reliability-based design optimisation framework for wind turbine towers", J. Renew. Energy, 167, 942-953. https://doi.org/10.1016/j.renene.2020.12.022.
  29. Shao, L.F. and Zheng, R.J. (2011), "Study on large wind power tower structure concept optimization", Appl. Mech. Mater., 99-100, 911-918. https://doi.org/10.4028/www.scientific.net/amm.99-100.911.
  30. Shittu, A.A., Ali, M. and Wang, L. (2020), "Comparative study of structural reliability assessment methods for offshore wind turbine jacket support structures", J. Appl. Sci., 10(3), 860. https://doi.org/10.3390/app10030860.
  31. Tran, H., Thai, H.T. Uy, B., Hicks, S.J. and Kang, W.H. (2022), "System reliability-based design of steel-concrete composite frames with CFST columns and composite beams", J. Constr. Steel Res., 194, 107298. https://doi.org/10.1016/j.jcsr.2022.107298.
  32. Wang, Q., Wang, C.S. and Wang, X.X. (2011), "Research progress on steel-concrete composite bridge towers", Adv. Mater. Res., 250-253, 2392-2395. https://doi.org/10.4028/www.scientific.net/amr.250-253.2392.
  33. Wang, Q., Wang, X.X., Wang, C.S. and Xu, Y. (2011), "Experimental research on steel-concrete composite bridge towers with different cross sections", Adv. Mater. Res., 255-260, 1295-1298. https://doi.org/10.4028/www.scientific.net/amr.255-260.1295.
  34. Wen, Y., Cai, J.Q. and Chen, M.J. (2020), "Mechanical behavior of intercalation plate joints of concrete-filled steel tubular wind turbine tower", J. Southwest Jiao Tong Univ., 55(02), 332-342. (in Chinese)
  35. Wen, Y., Xiong, W. and Cai, J.Q. (2021), "Mechanical performance of universal wrapped rod-type branch joints of concrete-filled steel tube lattice wind power tower", J. Build. Struct., 42(06), 190-198. https://doi.org/10.14006/j.jzjgxb.2019.0425.
  36. Wen, Y., Zhang, J. and Yu, Y. (2019), "Damage mechanism analysis of bolted universal ball joints of latticed concrete-filled steel tubular wind turbine tower", J. Build. Struct., 40(S1), 339-346. https://doi.org/10.14006/j.jzjgxb.2019.S1.045.
  37. Xiong, Z.M. and Wang, S.L. (2015), Civil Engineering Structural Test, China Construction Industry Press, Beijing. (in Chinese)
  38. Xu, B., Zou, D., Kong, X., Hu, Z. and Zhou, Y. (2015), "Dynamic damage evaluation on the slabs of the concrete faced rockfill dam with the plastic-damage model", Comput. Geotech., 65, 258-265. https://doi.org/10.1016/j.compgeo.2015.01.003.
  39. Xue, J.Q., Huang, J.P., Fiore, A., Briseghella, B. and Marano, G.C. (2023), "Prediction of the mechanical performance of compressed circular CFST columns with circumferential debonding gap", J. Constr. Steel Res., 208, 107988. https://doi.org/10.1016/j.jcsr.2023.107988.
  40. Yang, Y.F., Liu, M. and Fu, F. (2018), "Experimental and numerical investigation on the performance of three-legged CFST latticed columns under lateral cyclic loadings", Thin Wall. Struct., 132, 176-194. https://doi.org/10.1016/j.tws.2018.08.016.
  41. Yang, Y.F., Liu, M., Hou, C. and Bie, X.M. (2019), "Behaviour of four-legged square CFST latticed members under lateral cyclic loading", J. Constr. Steel Res., 156, 54-74. https://doi.org/10.1016/j.jcsr.2019.01.018.
  42. Yi, F., Lin, H.Y. and Ho, S.L. (2015), "Overview of wind power generation in China: Status and development", J. Renew. Sustain. Energy Rev., 50, 847-858. https://doi.org/10.1016/j.rser.2015.05.005.
  43. Yong, C.S. (2017), "Experimental study on the augmented velocity within a wind power tower for the vertical axis wind turbine", J. New Renew. Energy, 13(4), 13-22. https://doi.org/10.7849/ksnre.2017.12.13.4.013.
  44. Zhang, X., Ma, C.C., Chen, W.P. and Gu, S. (2012), "Global utilization and development of wind energy", Adv. Mater. Res., 608-609, 584-587. https://doi.org/10.4028/www.scientific.net/AMR.608-609.584.
  45. Zhao, Y., Wu, H., Liu, Z., Cheng, Q. and Yang, C. (2018), "A novel nonlinear contact stiffness model of concrete-steel joint based on the fractal contact theory", Nonlin. Dyn., 94(1), 151-164. https://doi.org/10.1007/s11071-018-4350-7.
  46. Zheng, J., Shozo, N. and Toshihiro, O. (2019), "Formulation of stress concentration factors for concrete-filled steel tubular (CFST) K-joints under three loading conditions without shear forces", J. Eng. Struct., 190, 90-100. https://doi.org/10.1016/j.engstruct.2019.04.017.