DOI QR코드

DOI QR Code

Numerical analysis of stress wave of projectile impact composite laminate

  • Zhangxin Guo (College of Mechanical and Vehicle Engineering, Taiyuan University of Technology) ;
  • Weijing Niu (Shanxi Polytechnic College) ;
  • Junjie Cui (College of Mechanical and Vehicle Engineering, Taiyuan University of Technology) ;
  • Gin Boay Chai (School of Mechanical and Aerospace Engineering, Nanyang Technological University) ;
  • Yongcun Li (College of Mechanical and Vehicle Engineering, Taiyuan University of Technology) ;
  • Xiaodong Wu (College of Mechanical and Vehicle Engineering, Taiyuan University of Technology)
  • 투고 : 2021.04.27
  • 심사 : 2023.05.26
  • 발행 : 2023.07.25

초록

The three-dimensional Hashin criterion and user subroutine VUMAT were used to simulate the damage in the composite layer, and the secondary stress criterion was used to simulate the interlayer failure of the cohesive element of the bonding layer and the propagation characteristics under the layer. The results showed that when the shear stress wave (shear wave) propagates on the surface of the laminate, the stress wave attenuation along the fiber strength direction is small, and thus producing a large stress profile. When the compressive stress wave (longitudinal wave) is transmitted between the layers, it is reflected immediately instead of being transmitted immediately. This phenomenon occurs only when the energy has accumulated to a certain degree between the layers. The transmission of longitudinal waves is related to the thickness and the layer orientation. Along the symmetry across the thickness direction, the greater is the stress amplitude along the layer direction. Based on the detailed investigation on the impact on various laminated composites carried out in this paper, the propagation characteristics of stress waves, the damage and the destruction of laminates can be explained from the perspective of stress waves and a reasonable layering sequence of the composite can be designed against damage and failure from low velocity impact.

키워드

과제정보

This work is supported by Fundamental Research Program of Shanxi Province (Grant No. 202103021224111, 20210302123126); and the "1331 project" Key Innovation Teams of Shanxi Province. The financial contributions are gratefully acknowledged.

참고문헌

  1. Abdul-Latif, A., Che Man, M.H. and Mansor, S. (2014), "Inclusion of strain-rate effects in low velocity impact simulation of laminated composites", Appl. Mech. Mater., 465, 1395-1399. https://doi.org/10.4028/www.scientific.net/AMM.465-466.1395.
  2. Abhishek, C., Umesh, K.V., Nand, J.K., Eva, G., Gyanendra, K.S., Bhupendra, P.S. and Srinivasa R.G. (2021), "Fabrication and characterization of novel nitinol particulate reinforced aluminium alloy metal matrix composites (NiTip/AA6061 MMCs)", Mater. Today: Proc., 38, 3027-3034. https://doi.org/10.1016/j.matpr.2020.09.326.
  3. Achchhe, L. and Nand, J.K. (2020), "The nonlinear deflection response of CNT/nanoclay reinforced polymer hybrid composite plate under different loading conditions", IOP Conf. Ser.: Mater. Sci. Eng., 814, 012033. https://doi.org/10.1088/1757-899X/814/1/012033.
  4. Atas, A., Mohamed, G.F. and Soutis, C. (2012), "Modelling delamination onset and growth in pin loaded composite laminates", Compos. Sci. Technol., 72(10), 1096-1101. https://doi.org/10.1016/j.compscitech.2011.07.005.
  5. Balasubramani, V., Boopathy, S.R. and Vasudevan, R. (2013), "Numerical analysis of low velocity impact on laminated composite plates", Procedia Eng., 64, 1089-1098. https://doi.org/10.1016/j.proeng.2013.09.187.
  6. Biranu, K.G., Devendra, S., Umesh, K.V., Irfan, A.B., Mohamed, H., Sarfaraz, K., Gyanendra, K.S., Gulam, M.S.A., Nand, J.K. and Nazia, H. (2022), "Investigation of mechanical and tribological behaviors of aluminum based hybrid metal matrix composite and multi-objective optimization", Mater., 15, 5607. https://doi.org/10.3390/ma15165607.
  7. Cunedioglu, Y. and Beylergil, B. (2014), "Free vibration analysis of laminated composite beam under room and high temperatures", Struct. Eng. Mech., 51(1), 111-130. http://doi.org/10.12989/sem. 2014.51.1.111.
  8. Cunedioglu, Y. and Beylergil, B. (2015), "Free vibration analysis of damaged composite beams", Struct. Eng. Mech., 55(1), 79-92. https://doi.org/10.12989/sem.2015.55.1.079.
  9. Cunedioglu, Y. and Shabani, S. (2020), "Free vibration analysis of a single edge cracked symmetric functionally graded stepped beams", Adv. Struct. Eng., 23(16), 3415-3428. https://doi.org/10.1177/1369433220939214.
  10. Evci, C. (2015), "Thickness-dependent energy dissipation characteristics of laminated composites subjected to low velocity impact", Compos. Struct., 133, 508-521. https://doi.org/10.1016/j.compstruct.2015.07.111.
  11. Guo, Z., Song, L., Chai, G.B., Li, Z., Li, Y. and Wang, Z. (2018), "A new multiscale numerical characterization of mechanical properties of graphene-reinforced polymer-matrix composites", Compos. Struct., 199, 1-9. https://doi.org/10.1016/j.compstruct.2018.05.053.
  12. Guo, Z.X., Li, Z.G., Zhu, H., Cui, J.J., Li, D.S. and Li, Y.C. (2020), "Numerical simulation of bolted joint composite laminates under low-velocity impact", Mater. Today Commun., 23, 100891. https://doi.org/10.1016/j.mtcomm.2020.100891.
  13. Khodjet-Kesba, M., Benkhedda, A., Adda Bedia, E.A. and Boukert, B. (2018), "On transverse matrix cracking in composite laminates loaded in flexure under transient hygrothermal conditions", Struct. Eng. Mech., 67(2), 165-173. https://doi.org/10.12989/sem.2018.67.2.165.
  14. Liu, T., Zhang, X.T., He, N.B. and Jia, G.H. (2017), "Numerical material model for composite laminates in high-velocity impact simulation", Lat. Am. J. Solid. Struct., 14(11), 1912-1931. https://doi.org/10.1590/1679-78253750.
  15. Nand, J.K. (2021), "Modeling of stress wave propagation in matrix cracked laminates", AIP Adv., 11, 085217-1-20. https://doi.org/10.1063/5.0057749.
  16. Nand, J.K. and Achchhe, L. (2022), "Nonlinear static analysis of CNT/nanoclay particles reinforced polymer matrix composite plate using secant function based shear deformation theory", Smart Sci., 10(4), 301-312. https://doi.org/10.1080/23080477.2022.2066052.
  17. Nand, J.K. and Achchhe, L. (2022), "Nonlinear static and dynamic performance of CNT reinforced and nanoclay modified laminated nanocomposite plate", AIP Adv., 12, 025102. https://doi.org/10.1063/5.0074987.
  18. Nand, J.K. and Achchhe, L. (2022), "Post buckling responses of carbon nanotubes' fiber reinforced and nanoclay modified polymer matrix hybrid composite plate under in-plane buckling load using the higher order shear deformation theory", Mech. Bas. Des. Struct. Mach., 1-29. https://doi.org/10.1080/15397734.2022.2126985.
  19. Nand, J.K., Amogh, M., Eva, G., Umesh, K.V., Gyanendra, K.S. and Devendra, K.S. (2021), "Investigation on secondary deformation of ultrafifine SiC particles reinforced LM25 metal matrix composites", Mater. Today: Proc., 47, 3054-3058. https://doi.org/10.1016/j.matpr.2021.05.640.
  20. Nand, J.K., Eva, G., Umesh, K.V. and Gyanendra, K.S. (2021), "Chapter Three-An insight into smart self-lubricating composites", Smart Polym. Nanocompos., 85-101. https://doi.org/10.1016/B978-0-12-819961-9.00012-8.
  21. Nand, J.K., Saurabh, B., Harshad, D., Eva, G., Gyanendra, K.S., Umesh, K.V., Girish, C.V. and Vivek, P. (2021), "An insight into processing and properties of smart carbon nanotubes reinforced nanocomposites", Smart Sci., 1-16. https://doi.org/10.1080/23080477.2021.1972913.
  22. Nand, J.K., Umesh, K.V., Gyanendra, K.S. and Sachin, C. (2019), "Fracture problems, vibration, buckling, and bending analyses of functionally graded materials: A state-of-the-art review including smart FGMS", Partic. Sci. Technol., 37(5), 1-26. https://doi.org/10.1080/02726351.2017.1410265.
  23. Nidhi, J., Eva, G. and Nand, J.K. (2021), "Plethora of carbon nanotubes applications in various fields-a state-of-the-artreview", Smart Sci., 1-24. https://doi.org/10.1080/23080477.2021.1940752.
  24. Park, H. (2019), "Investigation on low velocity impact behavior of sandwich composite and monolithic laminate plates using FEM analysis", Compos. Struct., 220, 842-846. https://doi.org/10.1016/j.compstruct.2019.04.058.
  25. Richardson, M.O.W. and Wisheart, M.J. (1996), "Review of low-velocity impact properties of composite materials", Compos. Part A: Appl. Sci. Manuf., 27(12), 1123-1131. https://doi.org/10.1016/1359-835X(96)00074-7.
  26. Sachin, C., Nand, J.K., Sachin, S., Balkrishna, N., Mukesh, K.S., Eva, G., Gyanendra, K.S. and Umesh, K.V. (2022), "An insight into Nylon 6,6 nanofibers interleaved E-glass fiber reinforced epoxy composites", J. Inst. Eng. (India): Ser. C, 104(1), 15-44. https://doi.org/10.1007/s40032-022-00882-0.
  27. Shankar, K., Sachin, C. and Nand, J.K. (2021), "An insight into advance self-healing composites", Mater. Res. Expr., 8, 052001. https://doi.org/10.1088/2053-1591/abfba5.
  28. Shor, O. and Vaziri, R. (2015), "Adaptive insertion of cohesive elements for simulation of delamination in laminated composite materials", Eng. Fract. Mech., 146, 121-138. https://doi.org/10.1016/j.engfracmech.2015.07.044.
  29. Sun, B., Zhang, Y. and Gu, B. (2013), "Low-velocity impact response and finite element analysis of four-step 3-D braided composites", Appl. Compos. Mater., 20(4), 397-413. https://doi.org/10.1007/s10443-012-9279-2.
  30. Topkaya, T., and Solmaz, M.Y. (2018), "Investigation of low velocity impact behaviors of honeycomb sandwich composites", J. Mech. Sci. Technol., 32(7), 3161-3167. https://doi.org/10.1007/s12206-018-0619-5.
  31. Wang, Y.Q., Tong, M.B. and Zhu, S.H. (2009), "Three-dimensional nonlinear progressive damage analysis on composite laminates based on continuum damage mechanics", J. Nanjing Univ. Aeronaut. Astronaut., 6, 709-714. https://doi.org/10.1360/972009-1551.
  32. Xu, S. and Chen, P.H. (2013), "Prediction of low velocity impact damage in carbon/epoxy laminates", Procedia Eng., 67, 489-496. https://doi.org/10.1016/j.proeng.2013.12.049.
  33. Zhu, H., Guo, Z.X., Zhu, M., Cui, J.J., He, Q. and Li, Y.C. (2020), "A progressive FE failure model for laminates under biaxial loading", Mech. Compos. Mater., 56(2), 207-214. https://doi.org/10.1007/s11029-020-09873-7.