과제정보
Funding for this paper was provided by Namseoul University 2022.
참고문헌
- Aeffner F, Zarella MD, Buchbinder N, Bui MM, Goodman MR, Hartman DJ, Lujan GM, Molani MA, Parwani AV, Lillard K, Turner OC, Vemuri VNP, Yuil-Valdes AG, Bowman D. Introduction to digital image analysis in whole-slide imaging: A white paper from the digital pathology association. J Pathol Inform. 2019. 10: 9.
- Bradley A, Jacobsen M. Toxicologic pathology forum*: Opinion on considerations for the use of whole slide images in glp pathology peer review. Toxicol Pathol. 2019. 47: 100-107. https://doi.org/10.1177/0192623318818790
- Brent R, Boucheron L. Deep learning to predict microscope images. Nat Methods. 2018. 15: 868-870. https://doi.org/10.1038/s41592-018-0194-9
- Coudray N, Ocampo PS, Sakellaropoulos T, Narula N, Snuderl M, Fenyo D, Moreira AL, Razavian N, Tsirigos A. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat Med. 2018. 24: 1559-1567. https://doi.org/10.1038/s41591-018-0177-5
- Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017. 542: 115-118. https://doi.org/10.1038/nature21056
- Farahani N, Parwani AV, Pantanowitz L. Whole slide imaging in pathology: Advantages, limitations, and emerging perspectives. Pathology and Laboratory Medicine International. 2015. 7: 23-33. https://doi.org/10.2147/PLMI.S59826
- Hamilton PW, Wang Y, McCullough SJ. Virtual microscopy and digital pathology in training and education. APMIS. 2012. 120: 305-315. https://doi.org/10.1111/j.1600-0463.2011.02869.x
- Hoefling H, Sing T, Hossain I, Boisclair J, Doelemeyer A, Flandre T, Piaia A, Romanet V, Santarossa G, Saravanan C, Sutter E, Turner O, Wuersch K, Moulin P. Histonet: A deep learning-based model of normal histology. Toxicol Pathol. 2021. 49: 784-797. https://doi.org/10.1177/0192623321993425
- Janowczyk A, Madabhushi A. Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases. J Pathol Inform. 2016. 7: 29.
- Kannan S, Morgan LA, Liang B, Cheung MG, Lin CQ, Mun D, Nader RG, Belghasem ME, Henderson JM, Francis JM, Chitalia VC, Kolachalama VB. Segmentation of glomeruli within trichrome images using deep learning. Kidney Int Rep. 2019. 4: 955-962. https://doi.org/10.1016/j.ekir.2019.04.008
- Kather JN, Pearson AT, Halama N, Jager D, Krause J, Loosen SH, Marx A, Boor P, Tacke F, Neumann UP, Grabsch HI, Yoshikawa T, Brenner H, Chang-Claude J, Hoffmeister M, Trautwein C, Luedde T. Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. Nat Med. 2019. 25: 1054-1056. https://doi.org/10.1038/s41591-019-0462-y
- Kozlowski C, Brumm J, Cain G. An automated image analysis method to quantify veterinary bone marrow cellularity on h&e sections. Toxicol Pathol. 2018a. 46: 324-335. https://doi.org/10.1177/0192623318766457
- Kozlowski C, Fullerton A, Cain G, Katavolos P, Bravo J, Tarrant JM. Proof of concept for an automated image analysis method to quantify rat bone marrow hematopoietic lineages on h&e sections. Toxicol Pathol. 2018b. 46: 336-347. https://doi.org/10.1177/0192623318766458
- Kuo KH, Leo JM. Optical versus virtual microscope for medical education: A systematic review. Anat Sci Educ. 2019. 12: 678-685. https://doi.org/10.1002/ase.1844
- Liang L, Liu M, Sun W. A deep learning approach to estimate chemically-treated collagenous tissue nonlinear anisotropic stress-strain responses from microscopy images. Acta Biomater. 2017. 63: 227-235. https://doi.org/10.1016/j.actbio.2017.09.025
- Mazer BL, Homer RJ, Rimm DL. False-positive pathology: Improving reproducibility with the next generation of pathologists. Lab Invest. 2019. 99: 1260-1265. https://doi.org/10.1038/s41374-019-0257-2
- Morton D, Sellers RS, Barale-Thomas E, Bolon B, George C, Hardisty JF, Irizarry A, McKay JS, Odin M, Teranishi M. Recommendations for pathology peer review. Toxicol Pathol. 2010. 38: 1118-1127. https://doi.org/10.1177/0192623310383991
- Pell R, Oien K, Robinson M, Pitman H, Rajpoot N, Rittscher J, Snead D, Verrill C. The use of digital pathology and image analysis in clinical trials. J Pathol Clin Res. 2019. 5: 81-90. https://doi.org/10.1002/cjp2.127
- Radiya-Dixit E, Zhu D, Beck AH. Automated classification of benign and malignant proliferative breast lesions. Sci Rep. 2017. 7: 9900.
- Saco A, Bombi JA, Garcia A, Ramirez J, Ordi J. Current status of whole-slide imaging in education. Pathobiology. 2016. 83: 79-88. https://doi.org/10.1159/000442391
- Schaer R, Otalora S, Jimenez-Del-Toro O, Atzori M, Muller H. Deep learning-based retrieval system for gigapixel histopathology cases and the open access literature. J Pathol Inform. 2019. 10: 19.
- Segnani C, Ippolito C, Antonioli L, Pellegrini C, Blandizzi C, Dolfi A, Bernardini N. Histochemical detection of collagen fibers by sirius red/fast green is more sensitive than van gieson or sirius red alone in normal and inflamed rat colon. PLoS One. 2015. 10: e0144630.
- Sheehan SM, Korstanje R. Automatic glomerular identification and quantification of histological phenotypes using image analysis and machine learning. Am J Physiol Renal Physiol. 2018. 315: F1644-F1651. https://doi.org/10.1152/ajprenal.00629.2017
- Sheikhzadeh F, Ward RK, van Niekerk D, Guillaud M. Automatic labeling of molecular biomarkers of immunohistochemistry images using fully convolutional networks. PLoS One. 2018. 13: e0190783.
- Tizhoosh HR, Pantanowitz L. Artificial intelligence and digital pathology: Challenges and opportunities. J Pathol Inform. 2018. 9: 38.
- Turner OC, Aeffner F, Bangari DS, High W, Knight B, Forest T, Cossic B, Himmel LE, Rudmann DG, Bawa B, Muthuswamy A, Aina OH, Edmondson EF, Saravanan C, Brown DL, Sing T, Sebastian MM. Society of toxicologic pathology digital pathology and image analysis special interest group article*: article*: Opinion on the application of artificial intelligence and machine learning to digital toxicologic pathology. Toxicol Pathol. 2020. 48: 277-294. https://doi.org/10.1177/0192623319881401
- Zarella MD, Bowman D, Aeffner F, Farahani N, Xthona A, Absar SF, Parwani A, Bui M, Hartman DJ. A practical guide to whole slide imaging: A white paper from the digital pathology association. Arch Pathol Lab Med. 2019. 143: 222-234. https://doi.org/10.5858/arpa.2018-0343-RA