Acknowledgement
This work was supported by the Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea govern- ment (MSIT) (No.2022-0-00223, Development of digital therapeutics to improve communication ability of autism spectrum disorder patients).
References
- American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Arlington, VA: American Psychiatric Association.
- Asgari, M., Chen, L., & Fombonne, E. (2021). Quantifying voice characteristics for detecting autism. Frontiers in Psychology, 12, 665096.
- Barche, P., Gurugubelli, K., & Vuppala, A. K. (2020, October). Towards automatic assessment of voice disorders: A clinical approach. Proceedings of the INTERSPEECH 2020 (pp. 2537-2541). Shanghai, China.
- Beccaria, F., Gagliardi, G., & Kokkinakis, D. (2022, June). Extraction and Classification of Acoustic Features from Italian Speaking Children with Autism Spectrum Disorders. Proceedings of the 2022 RaPID Workshop: Resources and ProcessIng of Linguistic, Para-Linguistic and Extralinguistic Data from People with Various Forms of Cognitive/Psychiatric/Developmental Impairments-within the 13th Language Resources and Evaluation Conference (pp. 22-30). Marseille, France.
- Benba, A., Jilbab, A., Hammouch, A., & Sandabad, S. (2015, March). Voiceprints analysis using MFCC and SVM for detecting patients with Parkinson's disease. Proceedings of the 2015 International Conference on Electrical and Information Technologies (ICEIT) (pp. 300-304). Marrakech, Morocco.
- Bone, D., Black, M. P., Lee, C. C., Williams, M. E., Levitt, P., Lee, S., & Narayanan, S. (2012, September). Spontaneous-speech acoustic-prosodic features of children with autism and the interacting psychologist. Proceedings of the INTERSPEECH 2012, 13th Annual Conference of the International Speech Communication Association (pp. 1043-1046). Portland, OR.
- Bonneh, Y. S., Levanon, Y., Dean-Pardo, O., Lossos, L., & Adini, Y. (2011). Abnormal speech spectrum and increased pitch variability in young autistic children. Frontiers in Human Neuroscience, 4, 237.
- Cho, S., Liberman, M., Ryant, N., Cola, M., Schultz, R. T., & Parish-Morris, J. (2019, September). Automatic detection of autism spectrum disorder in children using acoustic and text features from brief natural conversations. Proceedings of the INTERSPEECH 2019 (pp. 2513-2517). Graz, Austria.
- Diehl, J. J., & Paul, R. (2012). Acoustic differences in the imitation of prosodic patterns in children with autism spectrum disorders. Research in Autism Spectrum Disorders, 6(1), 123-134. https://doi.org/10.1016/j.rasd.2011.03.012
- Eyben, F., Scherer, K. R., Schuller, B. W., Sundberg, J., Andre, E., Busso, C., Devillers, L. Y.., ... Truong, K. P. (2016). The Geneva minimalistic acoustic parameter set (GeMAPS) for voice research and affective computing. IEEE Transactions on Affective Computing, 7(2), 190-202. https://doi.org/10.1109/TAFFC.2015.2457417
- Eyben, F., Wollmer, M., & Schuller, B. (2010, October). Opensmile: The Munich versatile and fast open-source audio feature extractor. Proceedings of the 18th ACM International Conference on Multimedia (pp. 1459-1462). New York, NY.
- Fusaroli, R., Lambrechts, A., Bang, D., Bowler, D. M., & Gaigg, S. B. (2017). Is voice a marker for autism spectrum disorder? A systematic review and meta-analysis. Autism Research, 10(3), 384-407. https://doi.org/10.1002/aur.1678
- Haider, F., de la Fuente, S., & Luz, S. (2020). An assessment of paralinguistic acoustic features for detection of Alzheimer's dementia in spontaneous speech. IEEE Journal of Selected Topics in Signal Processing, 14(2), 272-281. https://doi.org/10.1109/JSTSP.2019.2955022
- Jadoul, Y., Thompson, B., & de Boer, B. (2018). Introducing Parselmouth: A Python interface to Praat. Journal of Phonetics, 71, 1-15. https://doi.org/10.1016/j.wocn.2018.07.001
- Kim, M. J., Pae, S., & Park, C. I. (2007). Assessment of phonology and articulation for children (APAC). Incheon, Korea: Human Brain Research & Counseling.
- Lee, J. H., Lee, G. W., Bong, G., Yoo, H. J., & Kim, H. K. (2023). End-to-end model-based detection of infants with autism spectrum disorder using a pretrained model. Sensors, 23(1), 202.
- Lord, C., Rutter, M., Luyster, R. J., & Gotham, K. (2012). Autism diagnostic observation schedule, 2nd edition (ADOS-2). Los Angeles, CA: Western Psychological Corporation.
- Lyakso, E., Frolova, O., & Grigorev, A. (2017, September). Perception and acoustic features of speech of children with autism spectrum disorders. Proceedings of the 19th International Conference on Speech and Computer (pp. 602-612). Hatfield, UK.
- MacFarlane, H., Salem, A. C., Chen, L., Asgari, M., & Fombonne, E. (2022). Combining voice and language features improves automated autism detection. Autism Research, 15(7), 1288-1300. https://doi.org/10.1002/aur.2733
- McCann, J., & Peppe, S. (2003). Prosody in autism spectrum disorders: A critical review. International Journal of Language & Communication Disorders, 38(4), 325-350. https://doi.org/10.1080/1368282031000154204
- McFee, B., Metsai, A., McVicar, M., Balke, S., Thome', C., Raffel, C., ... Kim, T. (2022). Librosa (Librosa version 0.9.2) [Python toolkit]. Retrieved from https://doi.org/10.5281/zenodo.6759641
- Mohanta, A., & Mittal, V. K. (2022). Analysis and classification of speech sounds of children with autism spectrum disorder using acoustic features. Computer Speech & Language, 72, 101287.
- Mohanta, A., Mukherjee, P., & Mirtal, V. K. (2020, February). Acoustic features characterization of autism speech for automated detection and classification. Proceedings of the 2020 National Conference on Communications (NCC) (pp. 1-6). Kharagpur, India.
- Park, D. S., Chan, W., Zhang, Y., Chiu, C. C., Zoph, B., Cubuk, E. D., & Le, Q. V. (2019, September). SpecAugment: A simple data augmentation method for automatic speech recognition. Proceedings of the INTERSPEECH 2019 (pp. 2613- 2617). Graz, Austria.
- Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., ... Duchesnay, E. (2011). Scikit-learn: Machine learning in python. Journal of Machine Learning Research, 12(2011), 2825-2830.
- Yeo, E. J., Kim, S., & Chung, M. (2021, August). Automatic severity classification of Korean dysarthric speech using phoneme-level pronunciation features. Proceedings of the INTERSPEECH 2021 (pp. 4838-4842). Brno, Czechia.