DOI QR코드

DOI QR Code

Tube phonation in water for patients with hyperfunctional voice disorders: The effect of tube diameter and water immersion depth on bubble height and maximum phonation time

과기능적 음성장애 환자의 물저항발성: 튜브 직경과 물 깊이가 물거품 높이 및 최대발성지속시간에 미치는 영향

  • Min Gyeong Kim (Graduate Program in Audiology & Speech-Language Pathology, Daegu Catholic University) ;
  • Seong Hee Choi (Graduate Program in Audiology & Speech-Language Pathology, Daegu Catholic University) ;
  • Jong-In Youn (Departmenat of Biomedical Engineering, Daegu Catholic University)
  • 김민경 (대구가톨릭대학교 일반대학원 언어청각치료학과) ;
  • 최성희 (대구가톨릭대학교 일반대학원 언어청각치료학과) ;
  • 윤종인 (대구가톨릭대학교 의료공학과)
  • Received : 2023.06.01
  • Accepted : 2023.06.27
  • Published : 2023.06.30

Abstract

Tube phonation in water has been widely used for voice training among semi-occluded vocal tract (SOVT) exercises in which the patient bubbles with phonation keeping the tube submerged in water. This study aims to investigate the effect of tube diameter and water depth on bubble height and maximum phonation time (MPT) for patients with hyperfunctional voice disorders. Seventeen patients with hyperfunctional voice disorders were asked to bubble with sustained /u/ at the different inner diameters of tube (5, 7, and 10 mm), water depth (4, 7, and 10 cm). A water resistance phonation biofeedback system using a water height sensor was used for recording bubble height and MPT. The bubble height was significantly changed by the tube diameter while MPT was significantly changed with the tube diameter and water depth. Although the wider tube presented significantly lower bubble height for a given depth, relatively consistent bubble height was maintained. Depending on the water depth, the bubble height did not significantly differ for a given tube diameter. In addtion, MPT significantly decreased with water depth and a wider tube led significantly shorter MPT. A water level-driven water resistance biofeedback system provided useful information on bubble characteristics and vocal fold vibration depending on tube diameter and water depth. It can be useful to monitor the breath support during water resistance phonation for patients with hyperfunctional voice disorders.

목적: 물 속에서 튜브 발성은 semi-occluded vocal tract(SOVT) 연습 중 하나로 환자가 튜브를 물 속에 잠기게 하여 거품을 내면서 발성을 하는 것으로 음성 훈련에 널리 사용되어 왔다. 본 연구는 과기능성 음성장애 환자를 대상으로 물저항발성 동안 튜브 직경과 튜브를 담그는 물 깊이가 물거품 높이와 최대발성지속시간(maximum phonation time, MPT)에 미치는 영향을 조사하는 것을 목적으로 한다. 방법: 과기능성 음성장애 환자 17명에게 튜브 직경(5, 7, 10 mm), 튜브를 담그는 물 깊이(4, 7, 10 cm)에 따라 지속적인 /u/발성을 하면서 거품을 내도록 하였다. 물거품 높이 및 MPT 기록을 위해 수위 센서를 이용한 물저항발성 바이오피드백 시스템을 사용하였다. 결과: 물거품 높이는 튜브 직경에 의해 유의하게 변화한 반면 MPT는 튜브 직경과 깊이에 따라 유의하게 변화하였다. 직경이 더 넓을수록 주어진 깊이에 대해 유의하게 낮은 물거품 높이를 나타냈지만, 상대적으로 일관된 버블 높이가 유지되었다. 물의 깊이에 따라 주어진 튜브 직경에서 물거품 높이는 유의한 차이가 없었으나, 물의 깊이에 따라 MPT는 유의하게 감소하였고 튜브가 넓을수록 MPT가 유의하게 감소하였다. 결론: 수위 센서 방식의 물저항 바이오피드백 시스템은 튜브 직경 및 수심에 따른 기포 특성 및 성대 진동에 대해 유용한 정보를 제공하였다. 또한, 수위센서를 이용한 물저항발성 바이오시스템은 과기능적 음성장애가 있는 환자의 물저항 발성 중 호흡 지지를 모니터링하는 데 유용하게 사용될 수 있다.

Keywords

Acknowledgement

본 연구는 대한민국 교육부와 한국연구재단의 지원을 받아 수행된 연구임(NRF-2020S1A5A2a0145868).

References

  1. An, J. H., Choi, S. H., Lee, K. J., Lee, K., Choi, C. H., & Youn, J. I. (2022). Clinical applications of facial sensor biofeedback: Implications for voice therapy or vocal training. Communication Sciences & Disorders, 27(2), 420-431. https://doi.org/10.12963/csd.22897
  2. Andrade, P. A., Wistbacka, G., Larasson, H., Sodesten, M., Hammarberg, B., Simberg, S., Svec, J., & Granqvist, S. (2016). The flow and pressure relationships in different tubes commonly used for semi-occluded vocal tract exercise. Journal of Voice, 30(1), 36-41. https://doi.org/10.1016/j.jvoice.2015.02.004
  3. Andrade, P. A., Wood, G., Ratcliffe, P., Epstein, R., Pijper, A., & Svec, J. G. (2014). Electroglottographic study of seven semi-occluded exercises: Laxvox, straw, lip-trill, tongue-trill, humming, hand-over-mouth, and tongue-trill combined with hand-over-mouth. Journal of Voice, 28(5), 589-595. https://doi.org/10.1016/j.jvoice.2013.11.004
  4. Berry, D. A., Verdolini, K., Montequin, D. W., Hess, M. M., Chan, R. W., & Titze, I. R. (2001). A quantitative output-cost ratio in voice production. Journal of Speech, Language, and Hearing Research, 44(1), 29-37. https://doi.org/10.1044/1092-4388(2001/003)
  5. Calvache, C., Guzman, M., Bobadilla, M., & Bortnem, C. (2020). Variation on vocal economy after different semioccluded vocal tract exercises in subjects with normal voice and dysphonia. Journal of Voice, 34(4), 582-589. https://doi.org/10.1016/j.jvoice.2019.01.007
  6. Choi, S. H., Lim, K. B., Chae, H. R., & Youn, J. I. (2021). Development and usability of biofeedback system for water resistance therapy using sensor. Clinical Archives of Communication Disorders, 6(2), 104-112. https://doi.org/10.21849/cacd.2021.00542
  7. Duffy, J. R. (1995). Motor speech disorders: Susbstrates, differential diagnosis, and management. St. Louis, MO: Elsevier Mosby.
  8. Fadel, C. B. X., Dassie-Leite, A. P., Santos, R. S., Santos, C. G. D. Jr., Dias, C. A. S., & Sartori, D. J. (2016). Immediate effects of the semi-occluded vocal tract exercise with LaxVox® tube in singers. CoDAS, 28(5), 618-624. https://doi.org/10.1590/2317-1782/20162015168
  9. Granqvist, S., Simberg, S., Heartegard, S., Holmqvist, S., Larsson, H., Lindestad, P. A., Sodersten, M., & Hammarberg, B. (2015). Resonance tube phonation in water: High-speed imaging, electroglottographic and oral pressure observations of vocal fold vibrations--a pilot study. Logopedics, Phoniatrics, Vocology, 40(3), 113-121. https://doi.org/10.3109/14015439.2014.913682
  10. Guzman, M., Castro, C., Madrid, S., Olavarria, C., Leiva, M., Munoz, D., Jaramillo, E., & Laukkanen A. M. (2016). Air pressure and contact quotient measures during different semioccluded postures in subjects with different voice conditions. Journal of Voice, 30(6), 759.e1-759e10.
  11. Guzman, M., Laukkanen, A. M., Krupa, P., Horacek, J., Svec, J. G., & Geneid, A. (2013). Vocal tract and glottal function during and after vocal exercising with resonance tube and straw. Journal of Voice, 27(4), 523.e19-523.e34. https://doi.org/10.1016/j.jvoice.2013.02.007
  12. Guzman, M., Laukkanen, A. M., Traser, L., Geneid, A., Richter, B., Munoz, D., & Echternach, M. (2017). The influence of water resistance therapy on vocal fold vibration: A high-speed digital imaging study. Logopedics, Phoniatrics, Vocology, 42(3), 99-107. https://doi.org/10.1080/14015439.2016.1207097
  13. Hillman, R. E., Holmberg, E. B., Perkell, J. S., Walsh, M., & Vaughan, C. (1990). Phonatory function associated with hyperfunctionally related vocal fold lesions. Journal of Voice, 4(1), 52-63. https://doi.org/10.1016/S0892-1997(05)80082-7
  14. Hirano, M., Koike, Y., & Von Leden, H. (1968). Maximum phonation time and air usage during phonation. Clinical study. Folia Phoniatrica, 20(4), 185-201. https://doi.org/10.1159/000263198
  15. Koufman, J. A., & Blalock, P. D. (1991). Functional voice disorders. Otolaryngologic Clinics of North America, 24(5), 1059-1073. https://doi.org/10.1016/S0030-6665(20)31068-9
  16. Lee, S. J., Lee, K. Y., Lim, J. Y., & Choi, H. S. (2017). A comparison of acoustic & electroglottographic measures according to voiced lip trill methods. Phonetics & Speech Sciences, 9(4), 107-114.
  17. Lowell, S. Y., Kelly, R., Awan, S. N., Colton, R. H., & Chan, N. H. (2012). Spectral- and cepstral-based acoustic features of dysphonic, strained voice quality. Annals of Otology, Rhinology, & Laryngology, 121(8), 539-548. https://doi.org/10.1177/000348941212100808
  18. Maxfield, L., Titze, I., Hunter, E., & Kapsner-Smith, M. (2015). Intraoral pressures produced by thirteen semi-occluded vocal tract gestures. Logopedics, Phoniatrics, Vocology, 40(2), 86-92. https://doi.org/10.3109/14015439.2014.913074
  19. Ramig, L. O., & Verdolini, K. (1998). Treatment efficacy: Voice disorders. Journal of Speech, Language, and Hearing Research, 41(1), S101-S116. https://doi.org/10.1044/jslhr.4101.s101
  20. Roy, N., Merrill, R. M., Thibeault, S., Parsa, R. A., Gray, S. D., & Smith, E. M. (2004). Prevalence of voice disorders in teachers and the general population. Journal of Speech, Language, and Hearing Research, 47(2), 281-293. https://doi.org/10.1044/1092-4388(2004/023)
  21. Simberg, S., & Laine, A. (2007). The resonance tube method in voice therapy: Description and practical implementations. Logopedics, Phoniatrics, Vocology, 32(4), 165-170. https://doi.org/10.1080/14015430701207790
  22. Titze, I. R. (2009). Phonation threshold pressure measurement with a semi-occluded vocal tract. Journal of Speech, Language, and Hearing Research, 52(4), 1062-1072. https://doi.org/10.1044/1092-4388(2009/08-0110)
  23. Titze, I. R., Laukkanen, A. M., Finnegan, E. M., & Jaiswal, S. (2002). Raising lung pressure and pitch in vocal warm-ups: The use of flow-resistant straws. Journal of Singing-The Official Journal of the National Association of Teachers of Singing, 58(4), 329-338.
  24. Titze, I. R., Maxfield, L., & Cox, K. T. (2022). Optimizing diameter, length, and water immersion in flow resistant tube vocalization. Journal of Voice. Article in Press.
  25. Titze, I. R., & Palaparthi, A. (2016). Sensitivity of source-filter interaction to specific vocal tract shapes. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 24(12), 2507-2515. https://doi.org/10.1109/TASLP.2016.2616543
  26. Tyrmi, J., Radolf, V., Horacek, J., & Laukkanen, A. M. (2017). Resonance tube or lax vox? Journal of Voice, 31(4), 430-437. https://doi.org/10.1016/j.jvoice.2016.10.024