DOI QR코드

DOI QR Code

출현 양상 기반 소형호 내 동물플랑크톤 군집의 계절 변동과 다양성 관계

Relationship Between Seasonal Dynamics of Zooplankton Community and Diversity in Small Reservoir Focusing on Occurrence Pattern

  • 홍근혁 (경희대학교 환경학및환경공학과) ;
  • 오혜지 (경희대학교 환경학및환경공학과) ;
  • 최예림 (경희대학교 환경학및환경공학과) ;
  • 김준완 (공주대학교 생물교육과) ;
  • 최범명 (공주대학교 생물교육과) ;
  • 장광현 (경희대학교 환경학및환경공학과) ;
  • 장민호 (공주대학교 생물교육과)
  • Geun-Hyeok Hong (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Hye-ji Oh (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Yerim Choi (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Jun-Wan Kim (Department of Biology Education, Kongju National University) ;
  • Beom-Myeong Choi (Department of Biology Education, Kongju National University) ;
  • KwangHyeon Chang (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Min-Ho Jang (Department of Biology Education, Kongju National University)
  • 투고 : 2023.06.23
  • 심사 : 2023.06.30
  • 발행 : 2023.06.30

초록

불안정한 천이양상을 보이는 소형 호소는 대형 호소에 비해 동물플랑크톤 군집 동태 연구가 미진한 상황이다. 최근 지역 생물다양성 보전의 측면에서 소형 호소의 존재 가치가 부각되면서 생물 군집 동태 대한 이해의 필요성이 강조되고 있다. 본 연구는 세 소형 호소의 출현 동물플랑크톤을 월별로 채집하여 계절별 군집 동태를 분석하였다. 소형 호소의 복잡한 동물플랑크톤 군집 동태를 파악하기 위해 종 출현 패턴을 기반, 4개의 그룹(LALF Group, Low Abundance Low Frequency; LAHF Group, Low Abundance High Frequency; HALF Group, High Abundance Low Frequency; HAHF Group, High Abundance High Frequency)으로 그룹화하였다. 그룹 간 계절적 패턴을 비교하였으며, 각 그룹의 시간적 베타 다양성 기여도를 기반으로 한 다양성을 산출했다. 분석 결과 같은 출현량 경향을 보이지만 상반된 출현 빈도를 보이는 그룹 간의 관계가 있는 것으로 나타났으며, Nauplius가 세 호소공통으로 높은 출현량과 빈도를 보이는 종으로 나타났다. 적은 개체수를 보이면서 출현 빈도 역시 드물게 나오는 종들이 포함된 그룹인 LALF 그룹에 속한 종이 월별 천이와 다양도에 핵심인 것으로 분석되었으며 해당 그룹에는 Anuraeopsis fissa, Hexarthra mira 및 Lecane luna가 포함되었다. 한편 연중 특정 시기에만 출현하여 수체를 우점하는 종들이 포함된 그룹인 HALF 그룹이 호소 공통적으로 시간적 다양성을 저해하는 것으로 분석되었다. 본 연구의 결과를 통해 종 특이적인 출현 패턴이 연내 군집의 생물다양성에 기여하는 종을 분석하는 데 있어서 핵심적으로 작용할 수 있음을 제안한다.

Small ponds, which exhibit unstable succession pattern of plankton community, are less well studied than large lakes. Recently, the importance of small ponds for local biodiversity conservation has highlighted the necessity of understanding the dynamics of biological community. In the present study, we collected zooplankton from three small reservoirs with monthly basis and analyzed their seasonal dynamics. To understand the complicated zooplankton community dynamics of small reservoirs, we categorized zooplankton species into four groups (LALF Group, Low Abundance Low Frequency; LAHF Group, Low Abundance High Frequency; HALF Group, High Abundance Low Frequency; HAHF Group, High Abundance High Frequency) based on their occurrence pattern (abundance and frequency). We compared the seasonal pattern of each group, and estimated community diversity based on temporal beta diversity contribution of each group. The result revealed that there is a relationship between groups with the same abundance but different occurrence frequencies, and copepod nauplii are common important component for both abundance and frequency. On the other hand, species included with LALF Group throughout the study period are key in terms of monthly succession and diversity. LALF Group includes Anuraeopsis fissa, Hexarthra mira and Lecane luna. However, groups containing species that only occur at certain times of the year and dominate the waterbody, HALF Group, hindered to temporal diversity. The results of this study suggest that the species-specific occurrence pattern is one key trait of species determining its contribution to total annual biodiversity of given community.

키워드

과제정보

본 논문은 환경부의 재원으로 한국환경산업기술원의 생태계교란 어류의 퇴치(2단계) 최적화 기술개발 지원을 받아 수행하였습니다(No. RE202101620).

참고문헌

  1. Allan, J.D. 1976. Life history patterns in zooplankton. The American Naturalist 110(971): 165-180. https://doi.org/10.1086/283056
  2. Baselga, A., D. Orme, S. Villeger, J. De Bortoli, F. Leprieur and M. Logez. 2021. betapart: Partitioning Beta Diversity into Turnover and Nestedness Components. R package version 1.5.4. https://CRAN.Rproject.org/package=betapart.
  3. Brett, M.T. and C.R. Goldman. 1997. Consumer versus resource control in freshwater pelagic foodwebs. Science 275(5298): 384-386. https://doi.org/10.1126/science.275.5298.384
  4. Burns, C.W. and S.F. Mitchell. 1980. Seasonal succession and vertical distribution of zooplankton in Lake Hayes and Lake Johnson. New Zealand Journal of Marine and Freshwater Research 14(2): 189-204. https://doi.org/10.1080/00288330.1980.9515860
  5. Cai, W., J. Xia, M. Yang, W. Wang, C. Dou, Z. Zeng, S. Dong and L. Sheng. 2020. Cross-basin analysis of freshwater ecosystem health based on a zooplankton-based Index of Biotic Integrity: Models and application. Ecological Indicators 114: 106333.
  6. David, V., B. Sautour, R. Galois and P. Chardy. 2006. The paradox high zooplankton biomass-low vegetal particulate organic matter in high turbidity zones: what way for energy transfer? Journal of Experimental Marine Biology and Ecology 333(2): 202-218. https://doi.org/10.1016/j.jembe.2005.12.045
  7. Dray, S., D. Bauman, G. Blanchet, D. Borcard, S. Clappe, G. Guenard, T. Jombart, G. Larocque, P. Legendre, N. Madi and H.H. Wagner. 2023. adespatial: Multivariate Multiscale Spatial Analysis. R package version 0.3.21. https://CRAN.R-project.org/package=adespatial.
  8. Eckert, E.M., N. Anicic and D. Fontaneto. 2021. Freshwater zooplankton microbiome composition is highly flexible and strongly influenced by the environment. Molecular Ecology 30(6): 1545-1558. https://doi.org/10.1111/mec.15815
  9. Flossner, D. 2000. Die Haplopoda und Cladocera (ohne Bosminidae) Mitteleuropas. Backhuys. p. 428.
  10. Gilbert, J.J. and C.E. Williamson. 1978. Predator-prey behavior and its effect on rotifer survival in associations of Mesocyclops edax, Asplanchna girodi, Polyarthra vulgaris, and Keratella cochlearis. Oecologia 37(1): 13-22. https://doi.org/10.1007/BF00349987
  11. Gimaret-Carpentier, C., R. Pelissier, J.P. Pascal and F. Houllier. 1998. Sampling strategies for the assessment of tree species diversity. Journal of Vegetation Science 9(2): 161-172. https://doi.org/10.2307/3237115
  12. Hanazato, T. 1990. A comparison between predation effects on zooplankton communities by Neomysis and Chaoborus. Hydrobiologia 198: 33-40. https://doi.org/10.1007/BF00048620
  13. Hazelwood, D.H. and R.A. Parker. 1961. Population dynamics of some freshwater zooplankton. Ecology 42(2): 266-274. https://doi.org/10.2307/1932078
  14. Hessen, D.O. and B. Walseng. 2008. The rarity concept and the commonness of rarity in freshwater zooplankton. Freshwater Biology 53(10): 2026-2035. https://doi.org/10.1111/j.1365-2427.2008.02026.x
  15. Hofmann, W. 1983. Interactions between Asplanchna and Keratella cochlearis in the Plusssee (north Germany). Hydrobiologia 104: 363-365. https://doi.org/10.1007/BF00045992
  16. James, M.R. and D.J. Forsyth. 1990. Zooplankton-phytoplankton interactions in a eutrophic lake. Journal of Plankton Research 12(3): 455-472. https://doi.org/10.1093/plankt/12.3.455
  17. Jeong, H., A.A. Kotov and W. Lee. 2014. Checklist of the freshwater Cladocera (Crustacea: Branchiopoda) of South Korea. Proceedings of the Biological Society of Washington 127(1): 216-228. https://doi.org/10.2988/0006-324X-127.1.216
  18. Kenitz, K.M., A.W. Visser, P. Mariani and K.H. Andersen. 2017. Seasonal succession in zooplankton feeding traits reveals trophic trait coupling. Limnology and Oceanography 62(3): 1184-1197. https://doi.org/10.1002/lno.10494
  19. Kim, H.W., J.Y. Choi, G.H. La, K.S. Jeong and G.J. Joo. 2010. Relationship between rainfall and zooplankton community dynamics in a riverine wetland ecosystem (Upo). Korean Journal of Ecology and Environment 43(1): 129-135.
  20. Kirk, K.L. 2002. Competition in variable environments: experiments with planktonic rotifers. Freshwater Biology 47(6): 1089-1096. https://doi.org/10.1046/j.1365-2427.2002.00841.x
  21. Koppelmann, R., R. Bottger-Schnack, J. Mobius and H. Weikert. 2009. Trophic relationships of zooplankton in the eastern Mediterranean based on stable isotope measurements. Journal of Plankton Research 31(6): 669-686. https://doi.org/10.1093/plankt/fbp013
  22. Krzton, W. and J. Kosiba. 2020. Variations in zooplankton functional groups density in freshwater ecosystems exposed to cyanobacterial blooms. Science of The Total Environment 730: 139044.
  23. Larsson, P. 1978. The life cycle dynamics and production of zooplankton in OvreHeimdalsvatn. Ecography 1(2-3): 162-218. https://doi.org/10.1111/j.1600-0587.1978.tb00952.x
  24. Legendre, P. and M. De Caceres. 2013. Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecology Letters 16(8): 951-963. https://doi.org/10.1111/ele.12141
  25. Lemmens, P., J. Mergeay, T. De Bie, J. Van Wichelen, L. De Meester and S.A. Declerck. 2013. How to maximally support local and regional biodiversity in applied conservation? Insights from pond management. PLoS One 8(8): e72538.
  26. Lennon, J.J., P. Koleff, J.J. Greenwood and K.J. Gaston. 2004. Contribution of rarity and commonness to patterns of species richness. Ecology Letters 7(2): 81-87. https://doi.org/10.1046/j.1461-0248.2004.00548.x
  27. Lopes, P.M., L.M. Bini, S.A. Declerck, V.F. Farjalla, L.C. Vieira, C.C. Bonecker, F.A. Lansac-Toha, F.A. Esteves and R.L. Bozelli. 2014. Correlates of zooplankton beta diversity in tropical lake systems. PLoS One 9(10): e109581.
  28. Lynch, M. 1979. Predation, competition, and zooplankton community structure: an experimental study 1, 2. Limnology and Oceanography 24(2): 253-272. https://doi.org/10.4319/lo.1979.24.2.0253
  29. Morris, E.K., T. Caruso, F. Buscot, M. Fischer, C. Hancock, T.S. Maier, T. Meiners, C. Muller, E. Obermaier, D. Prati, S.A. Socher, I. Sonnemann, N. Waschke, T. Wubet, S. Wurst and M.C. Rillig. 2014. Choosing and using diversity indices: insights for ecological applications from the German Biodiversity Exploratories. Ecology and Evolution 4(18): 3514-3524. https://doi.org/10.1002/ece3.1155
  30. Mouillot, D., D.R. Bellwood, C. Baraloto, J. Chave, R. Galzin, M. Harmelin-Vivien, M. Kulbicki, S. Lavergne, S. Lavorel, N. Mouquet, C.E.T. Paine, J. Renaud and W. Thuiller. 2013. Rare species support vulnerable functions in high-diversity ecosystems. PLoS Biology 11(5): e1001569.
  31. Nicolle, A., L.A. Hansson, J. Brodersen, P.A. Nilsson and C. Bronmark. 2011. Interactions between predation and resources shape zooplankton population dynamics. PLoS One 6(1): e16534.
  32. Oertli, B., R. Cereghino, A. Hull and R. Miracle. 2009. Pond conservation: from science to practice. Hydrobiologia 634: 1-9. https://doi.org/10.1007/s10750-009-9891-9
  33. Oh, H.J., H.G. Jeong, G.S. Nam, Y. Oda, W. Dai, E.H. Lee, D.S. Kong, S.J. Hwang and K.H. Chang. 2017. Comparison of taxon-based and trophi-based response patterns of rotifer community to water quality: applicability of the rotifer functional group as an indicator of water quality. Animal Cells and Systems 21(2): 133-140. https://doi.org/10.1080/19768354.2017.1292952
  34. Oksanen, J., F.G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P.R. Minchin, R.B. O'Hara, G.L. Simpson, P. Solymos, M.H.H. Stevens, E. Szoecs and H. Wagner. 2020. vegan: Community Ecology Package. R package version 2.5-7. https://CRAN.R-project.org/package=vegan.
  35. Paik, W.H. 1989. Illustrated encyclopedia of fauna & flora of Korea.
  36. Pickhardt, P.C., C.L. Folt, C.Y. Chen, B. Klaue and J.D. Blum. 2005. Impacts of zooplankton composition and algal enrichment on the accumulation of mercury in an experimental freshwater food web. Science of The Total Environment 339(1-3): 89-101. https://doi.org/10.1016/j.scitotenv.2004.07.025
  37. R Core Team. 2021. R: A language and environment for statistical computing. Vienna, Austria. Ver. 4.1.2. R Foundation for Statistical Computing. http://www.R-project.org/.
  38. Riemann, B. 1985. Potential importance of fish predation and zooplankton grazing on natural populations of freshwater bacteria. Applied and Environmental Microbiology 50(2): 187-193. https://doi.org/10.1128/aem.50.2.187-193.1985
  39. Sommer, U., Z.M. Gliwicz, W. Lampert and A. Duncan. 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Archiv fur Hydrobiologie 106(4): 433-471. https://doi.org/10.1127/archiv-hydrobiol/106/1986/433
  40. Sondergaard, M., E. Jeppesen and J.P. Jensen. 2005. Pond or lake: does it make any difference? Archiv fur Hydrobiologie 162(2): 143-165. https://doi.org/10.1127/0003-9136/2005/0162-0143
  41. Svanback, R. and L. Persson. 2004. Individual diet specialization, niche width and population dynamics: implications for trophic polymorphisms. Journal of Animal Ecology 73(5): 973-982. https://doi.org/10.1111/j.0021-8790.2004.00868.x
  42. Vanni, M.J. 1987. Effects of food availability and fish predation on a zooplankton community. Ecological Monographs 57(1): 61-88. https://doi.org/10.2307/1942639
  43. Verstraeten, G. and J. Poesen. 2000. Estimating trap efficiency of small reservoirs and ponds: methods and implications for the assessment of sediment yield. Progress in Physical Geography 24(2): 219-251. https://doi.org/10.1177/030913330002400204
  44. Winder, M. and A.D. Jassby. 2011. Shifts in zooplankton community structure: implications for food web processes in the upper San Francisco Estuary. Estuaries and Coasts 34: 675-690. https://doi.org/10.1007/s12237-010-9342-x
  45. Yoon, J.D., M.H. Jang, M.C. Kim, G.S. Nam, S.J. Hwang and G.J. Joo. 2006. The characterization of fish communities in agricultural reservoirs. Korean Journal of Ecology and Environment 39(1): 131-137.
  46. Zollner, E., H.G. Hoppe, U. Sommer and K. Jurgens. 2009. Effect of zooplankton-mediated trophic cascades on marine microbial food web components (bacteria, nanoflagellates, ciliates). Limnology and Oceanography 54(1): 262~275. https://doi.org/10.4319/lo.2009.54.1.0262