DOI QR코드

DOI QR Code

Taxonomic Characteristics of Chironomids Larvae from the Hangang River at the Genus Level.

한강 수계 내 서식하는 깔따구류 유충의 속 수준에서의 분류 형질

  • Jae-Won Park (Department of Environment Oceanography, Chonnam National University) ;
  • Bong-Soon Ko (Department of Environment Oceanography, Chonnam National University) ;
  • Hyunsu Yoo (Fisheries Science Institute, Chonnam National University) ;
  • Dongsoo Kong (Department of Life Science, Kyonggi University) ;
  • Ihn-Sil Kwak (Department of Environment Oceanography, Chonnam National University)
  • Received : 2023.06.09
  • Accepted : 2023.06.30
  • Published : 2023.06.30

Abstract

The Hangang River* is necessary to manage the water environment of severe pollution due to the high density of residential areas, parks, and agriculture and the large population concentrated there. Benthic macroinvertebrates, such as chironomids larvae, are bioindicator species that reflect environmental changes and are crucial for water quality monitoring. In this study, we investigated morphological characteristics and molecular analysis of the chironomids larvae inhabiting the Hangang River area for water environment surveys. For this research, 20 rivers, lakes, and urban area in the Hangang River basin were selected. Chironomids larvae were collected from July to September 2022, and their appearance and characteristics were identified through morphological identification. In addition, phylogenetic analysis was performed based on the mtCOI gene sequences of the collected chironomids larvae, and identification at the genus level was confirmed. As a result, 32 species and 18 genera of 3 subfamilies of Chironomidae larvae were identified, and Stictochironomus sp. dominated most sites(6 sites). The morphological characteristics of the identified chironomids larvae, such as the mentum, ventromental plate, and antenna, were organized into table and pictorial keys, and a Bayesian inference molecular phylogeny was presented. These results provide basic morphological information for genus-level identification and can be used as fundamental information for water quality management.

깔따구류 유충(Chironomidae larvae)은 저서성대형무척추동물로 수질 및 환경오염 생물 모니터링에 중요한 지표생물이다. 본 연구에서는 2022년 7월에서 9월 동안 한강의 다양한 수계에서 서식하는 깔따구류 유충을 채집하여 형태적 동정 및 유전자 계통 분석을 실시하였다. 20개 지점에서 총 3아과 18속 32종의 깔따구류 유충이 출현하였으며, 반지깔따구속에 속하는 1개 종이 6개 지점에서 우점하였다. 깔따구류 유충을 분류하는 데 이용하는 몸통, 두부, 하순기절, 촉각 등을 관찰하여 특징을 Pictorial key로 제시하였고, 유전자 계통분석 결과 3개 아과가 명확하게 구분되었으며, 속 수준에서도 구분이 되었다. 이러한 결과들은 깔따구류 유충 동정에 도움이 될 것이고, 수질 조사 및 관리에 기초적인 자료로 활용할 것으로 기대된다.

Keywords

Acknowledgement

본 결과물은 한국연구재단의 지원 (NRF-2018-R1A6A1A-03024314)을 받아 연구되었습니다. 본 연구는 환경부(MOE) 수생태계 보전 연구사업과 한국환경산업기술원(KEIRI)의 지원을 받아 연구되었습니다(2021003050001 and 2022003050006).

References

  1. Antczak-Orlewska, O., M. Plociennik, R. Sobczyk, D. Okupny, R. Stachowicz-Rybka, M. Rzodkiewicz, J. Sicinski, A. Mroczkowska, M. Krapiec, M. Slowinski and P. Kittel. 2021. Chironomidae Morphological Types and Functional Feeding Groups as a Habitat Complexity Vestige. Frontiers in Ecology and Evolution 8: 583831.
  2. Armitage, P.D., L.C. Pinder and P. Cranston. 2012. The Chironomidae: Biology and Ecology of Non-biting Midges. Springer, Netherlands.
  3. Byeon, H.K. 2018. Characteristic of fish community and distribution of exotic species at the Hangang River in Seoul, Korea. Korean Journal of Ichthyology 30(3): 144-154. https://doi.org/10.35399/ISK.30.3.3
  4. Carew, M.E., V. Pettigrove, R.L. Cox and A.A. Hoffmann. 2007. DNA identification of urban Tanytarsini chironomids (Diptera: Chironomidae). Journal of the North American Benthological Society 26(4): 587-600. https://doi.org/10.1899/06-120.1
  5. Carr, J.F. and J.K. Hiltunen. 1965. Changes in the bottom fauna of western Lake Erie from 1930 to 1961. Limnology and Oceanography 10(4): 551-569. https://doi.org/10.4319/lo.1965.10.4.0551
  6. Cranston, P.S. 2019. Identification guide to genera of aquatic larval Chironomidae (Diptera) of Australia and New Zealand. Zootaxa 4706(1): 71-102. https://doi.org/10.11646/zootaxa.4706.1.3
  7. Darriba, D., G.L. Taboada, R. Doallo and D. Posada. 2012. jModel Test 2: more models, new heuristics and parallel computing. Nature Methods 9(8): 772.
  8. Ðurdevic, A., A. Medeiros, V. Zikic, A. Milosavljevic, D. Savic-Zdravkovic, M. Lazarevic and D. Milosevic. 2023. Mandibular shape as a proxy for the identification of functional feeding traits of midge larvae (Diptera: Chironomidae). Ecological Indicators 147: 109908.
  9. Epler, J.H. 2001. Identification manual for the larval Chironomidae of North and South Carolina. USEPA Grant.
  10. Failla, A.J., A.A. Vasquez, P. Hudson, M. Fujimoto and J.L. Ram. 2016. Morphological identification and COI barcodes of adult flies help determine species identities of chironomid larvae (Diptera, Chironomidae). Bulletin of Entomological Research 106(1): 34-46. https://doi.org/10.1017/S0007485315000486
  11. Folmer, O., W.R. Hoeh, M.B. Black and R.C. Vrijenhoek. 1994. Conserved primers for PCR amplification of mitochondrial DNA from different invertebrate phyla. Molecular Marine Biology and Biotechnology 3(5): 294-299.
  12. Gernhard, T. 2008. The conditioned reconstructed process. Journal of Theoretical Biology 253(4): 769-778. https://doi.org/10.1016/j.jtbi.2008.04.005
  13. Hasegawa, M., H. Kishino and T. Yano. 1985. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22: 160-174. https://doi.org/10.1007/BF02101694
  14. Hong, C., W.S. Kim, J.Y. Kim, S.Y. Noh, J.H. Park, J.K. Lee and I.S. Kwak. 2019. Change of benthic macroinvertebrates community composition following summer precipitation variance. Korean Journal of Ecology and Environment 52(4): 348-357. https://doi.org/10.11614/KSL.2019.52.4.348
  15. Hurvich, C.M. and C.-H. Tsai. 1989. Regression and time series model selection in small samples. Biometrika 76(2): 297-307. https://doi.org/10.1093/biomet/76.2.297
  16. Jung, S.W., Y.H. Kim, J.H. Lee, D.G. Kim, M.K. Kim and H.M. Kim. 2022. Biodiversity Changes and Community Characteristics of Benthic Macroinvertebrates in Weir Section of the Nakdong River, South Korea. Korean Journal of Environment and Ecology 36(2): 150-164. https://doi.org/10.13047/KJEE.2022.36.2.150
  17. Kang, H.J., M.J. Baek, J.H. Kang and Y.J. Bae. 2022a. Diversity and DNA Barcode Analysis of Chironomids (Diptera: Chironomidae) from Large Rivers in South Korea. Insects 13(4): 346. https://doi.org/10.3390/insects13040346.
  18. Kang, H.J., M.J. Baek, J.H. Kang and Y.J. Bae. 2022b. DNA Barcoding of Chironomid Larvae (Diptera: Chironomidae) from Large Rivers in South Korea to Facilitate Freshwater Biomonitoring and Public Health Surveillance. International Journal of Environmental Research and Public Health 19(19): 12035.
  19. Kim, K.S. and Y. Na. 2007. The present state and improvement of water quality of Han River. Journal-Korean Society of Environmental Engineers 29(11): 1169.
  20. Kim, S., K.H. Song, H.I. Ree and W. Kim. 2012. A DNA barcode library for Korean Chironomidae (Insecta: Diptera) and indexes for defining barcode gap. Molecules and Cells 33: 9-17. https://doi.org/10.1007/s10059-012-2151-2
  21. Kim, W.S., B. Choi, M.K. Kim, S.H. Chae and I.S. Kwak. 2020. Expression of heat shock protein 70 gene and body color changes in non-biting midge larvae (Glyptotendipes tokunagai) effected by O3 treatment. Korean Journal of Ecology and Environment 53(4): 324-330. https://doi.org/10.11614/KSL.2020.53.4.324
  22. Knowlton, N., L.A. Weigt, L.A. Solorzano, D.K. Mills and E. Bermingham. 1993. Divergence in proteins, mitochondrial DNA, and reproductive compatibility across the isthmus of Panama. Science 260(5114): 1629-1632. https://doi.org/10.1126/science.8503007
  23. Kwak, I.S. 2015. Introduction to the Chironomidae as a water pollution indicator. Chonnam National University Press, pp. 13-156.
  24. Kwak, I.S., J.W. Park, W.S. Kim and K.Y. Park. 2020. Morphological and Genetic Species Identification in the Chironomus Lavae (Diptera: Chironomidae) Found in Domestic Tap Water Purification Plants. Korean Journal of Ecology and Environment 53: 286-294. https://doi.org/10.11614/KSL.2020.53.3.286
  25. Kwak, I.S., J.W. Park, W.S. Kim and K. Park. 2021. Morphological and genetic species identification in the Chironomidae larvae found in tap water purification plants in Jeju. Korean Journal of Ecology and Environment 54(3): 240-246. https://doi.org/10.11614/KSL.2021.54.3.240
  26. Larocque-Tobler, I. 2014. The Polish sub-fossil chironomids. Palaeontologia Electronica 17(1): 1-28.
  27. Lee, J.W., J.K. Choi, S.H. Oh and G.W. Choi. 2010. A study on the benthic macroinvertebrates and biological water quality evaluation in nature sabbatical area of Unmunsan. Korean Journal of Environment and Ecology 24(1): 1-13.
  28. Montano-Campaz, M.L., L. Gomes-Dias, B.E. Toro Restrepo and V.H. Garcia-Merchan. 2019. Incidence of deformities and variation in shape of mentum and wing of Chironomus columbiensis (Diptera, Chironomidae) as tools to assess aquatic contamination. PLoS One 14(1): e0210348.
  29. National Geographic Information Institute Ministry of Land, Infrastructure and Transport Republic of Korea. 2015. Toponymic Guidelines for Map and Other Editors for International Use Republic of Korea. Second Edition.
  30. National Institute of Biological Resources. 2022. The research on the diversity and ecological characteristics of chironomids larvae from Korea.
  31. Park, K. and I.S. Kwak. 2020. Cadmium-induced developmental alteration and upregulation of serine-type endopeptidase transcripts in wild freshwater populations of Chironomus plumosus. Ecotoxicology Environmental Safety 192: 110240.
  32. Park, M., Y. Cho, K. Shin, H. Shin, S. Kim and S. Yu. 2021. Analysis of water quality characteristics in unit watersheds in the hangang basin with respect to tmdl implementation. Sustainability 13(18): 9999.
  33. Pfenninger, M., C. Nowak, C. Kley, D. Steinke and B. Streit. 2007. Utility of DNA taxonomy and barcoding for the inference of larval community structure in morphologically cryptic Chironomus (Diptera) species. Molecular Ecology 16(9): 1957-1968. https://doi.org/10.1111/j.1365-294X.2006.03136.x
  34. Ram, J.L., F. Banno, R.R. Gala, J.P. Gizicki and D.R. Kashia. 2014. Estimating sampling effort for early detection of non-indigenous benthic species in the Toledo Harbor Region of Lake Erie. Management of Biological Invasions 5(3): 209-216. https://doi.org/10.3391/mbi.2014.5.3.03
  35. Rambaut, A. 2018. FigTree, version v.1.4.4. Accessed 25 October 2020.
  36. Reyes-Maldonado, R., B. Marie and A. Ramirez. 2021. Rearing methods and life cycle characteristics of Chironomus sp. Florida (Chironomidae: Diptera): A rapid-developing species for laboratory studies. PLoS One 16(2): e0247382.
  37. Suchard, M.A., P. Lemey, G. Baele, D.L. Ayres, A.J. Drummond and A. Rambaut. 2018. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evolution 4(1): vey016.
  38. Tamura, K., G. Stecher and S. Kumar. 2021. MEGA11: molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution 38(7): 3022-3027. https://doi.org/10.1093/molbev/msab120
  39. The Entomological Society of Korea and Korean Society of Applied Entomology (ESA and KSAE). 1994. Check List of Insects from Korea. 1-744.
  40. Thompson, J.D., D.G. Higgins and T.J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22(22): 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  41. Yoo, H.J., D.K. Kim, H.H. Kwon and S.O. Lee. 2020. Data driven water surface elevation forecasting model with hybrid activation function - A case study for Hangang River, South Korea. Applied Sciences 10(4): 1424.
  42. Yoon, I.B. and D.J. Chun. 1992. Systematics of the genus Chironomus (Diptera: Chironomidae) in Korea. Entomological Research Bulletin 18: 1-14.
  43. Yoon, S.H., J.W. Park, J.Y. Park, J.J. Seo, S.K. Jeong, J.K. Chung and S.J. Bae. 2019. Classification and Distribution of Chironomidae (Diptera) using DNA Barcoding at Urban Streams in Gwangju, South Korea. Korea Journal of Ecology and Environment 52(4): 385-393. https://doi.org/10.11614/KSL.2019.52.4.385