Acknowledgement
이 연구는 2022년도 단국대학교 대학연구비의 지원으로 연구되었음.
References
- Bolstad BM (2004). Low level analysis of high-density oligonucleotide array data: Background, normalization and summarization (Dissertation), University of California-Berkeley, Berkeley, CA.
- Bruce AG and Martin RD (1989). Leave-k-out diagnostics for time series, Journal of the Royal Statistical Society B, 51, 363-401. https://doi.org/10.1111/j.2517-6161.1989.tb01435.x
- Chen C and Liu LM (1993). Joint estimation of model parameters and outlier effects in time series, Journal of the American Statistical Association, 88, 284-297. https://doi.org/10.1080/01621459.1993.10594321
- Gupta M, Gao J, Aggarwal CC, and Han J (2013). Outlier detection for temporal data: A survey, IEEE Transactions on Knowledge and Data Engineering, 26, 2250-2267. https://doi.org/10.1109/TKDE.2013.184
- Lopez-de-Lacalle J (2016). Tsoutliers: Detection of Outliers in Time Series, R package version 0.6-8.
- Lefrancois B (1991). Detecting over-influential observations in time series, Biometrika, 78, 91-99. https://doi.org/10.1093/biomet/78.1.91
- McGee M and Chen Z (2006). Parameter estimation for the exponential-normal convolution model for background correction of Affymetrix GeneChip data, Statistical Applications in Genetics and Molecular Biology, 5, Article 24.
- Pena D (1990). Influential observations in time series, ˜ Journal of Business & Economic Statistics, 8, 235-241. https://doi.org/10.1080/07350015.1990.10509795
- Plancade S, Rozenholc Y, and Lund E (2012). Generalization of the normal-exponential model: Exploration of a more accurate parametrisation for the signal distribution on Illumina BeadArrays, BMC Bioinformatics, 13, 1-16. https://doi.org/10.1186/1471-2105-13-1
- Ren H, Xu B, Wang Y, Yi C, Huang C, Kou X, and Zhang Q (2019). Time-Series anomaly detection service at Microsoft, In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Anchorage, AK, USA, 3009-3017.
- Ritchie ME, Silver J, Oshlack A, Holmes M, Diyagama D, Holloway A, and Smyth GK (2007). A comparison of background correction methods for two-colour microarrays, Bioinformatics, 23, 2700-2707. https://doi.org/10.1093/bioinformatics/btm412
- Shittu IO and Shangodoyin DK (2008). Detection of outliers in time series data: A frequency domain approach, Asian Journal of Scientific Research, 1, 130-137. https://doi.org/10.3923/ajsr.2008.130.137
- Silver JD, Ritchie ME, and Smyth GK (2009). Microarray background correction: Maximum likelihood estimation for the normal-exponential convolution, Biostatistics, 10, 352-363. https://doi.org/10.1093/biostatistics/kxn042