참고문헌
- Beck A and Tetruashvili L (2013). On the convergence of block coordinate descent type methods, SIAM Journal on Optimization, 23, 2037-2060. https://doi.org/10.1137/120887679
- Boriah S, Chandola V, and Kumar V (2008). Similarity measures for categorical data: A comparative evaluation, Proceedings of the Eighth SIAM International Conference on Data Mining, 30, 243-254.
- Canzler S, Schor J, Busch W et al. (2020). Prospects and challenges of multi-omics data integration in toxicology, Archives of Toxicology, 94, 371-388. https://doi.org/10.1007/s00204-020-02656-y
- Chari R, Coe BP, Vucic EA, Lockwood WW, and Lam WL (2010). An integrative multi-dimensional genetic and epigenetic strategy to identify aberrant genes and pathways in cancer, BMC Systems Biology, 4, 67.
- Church K and Gale WA (1995). Inverse document frequency (IDF): A measure of deviations from Poisson, In Proceedings of the Third Workshop on Very Large Corpora, 121-130.
- Cristescu R, Lee J, Nebozhyn M et al. (2015). Molecular analysis of gastric cancer identified subtypes associated with distinct clinical outcomes, Nature Medicine, 21, 449-456. https://doi.org/10.1038/nm.3850
- Eskin E, Arnold A, Prerau M, Portmoy L, and Stolfo S (2002). A geometric framework for unsupervised anomaly detection: Detecting intrusions in unlabeled data, Applications of Data Mining in Computer Security, 6, 77-102. https://doi.org/10.1007/978-1-4615-0953-0_4
- Gower J (1971). A general coefficient of similarity and some of its properties, Biometrics, 27, 857-871. https://doi.org/10.2307/2528823
- Guinney J, Dienstmann R, Wang X et al. (2015). The consensus molecular subtypes of colorectal cancer, Nature Medicine, 21, 1350-1356.
- Hagen L and Kahng AB (1987). New spectral methods for ratio cut partitioning and clustering, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 11, 1074-1085. https://doi.org/10.1109/43.159993
- Kvalseth TO (1987). Entropy and correlation: Some comments, IEEE Transactions on Systems, Man, and Cybernetics, 17, 517-519. https://doi.org/10.1109/TSMC.1987.4309069
- Liu Y, Devescovi V, Chen S, and Nardini C (2013). Multilevel omic data integration in cancer cell lines: Advanced annotation and emergent properties, BMC Systems Biology, 7, 14.
- Liu H, Zhao R, Fang H, Cheng F, Fu Y, and Liu YY (2017). Entropy-Based consensus clustering for patient stratification, Bioinformatics, 33, 2691-2698. https://doi.org/10.1093/bioinformatics/btx167
- Markert EK, Mizuno H, Vazquez A, and Levine AJ (2011). Molecular classification of prostate cancer using cureted expression signatures, Proceedings of the National Academy of Sciences of the United States of America, 108, 20276-21281. https://doi.org/10.1073/pnas.1117029108
- Mitra S, Saha S, and Hasanuzzaman M (2020). Multi-View clustering for multi-omics data using unified embedding, Scientific Reports, 10, 13654.
- Ng AY, Jordan MI, and Weiss Y (2002). On spectral clustering: Analysis and an algorithm, In Advances in Neural Information Processing Systems, 849-856.
- Nguyen T, Tagett R, Diaz D, and Draghici S (2017). A novel approach for data integration and disease subtyping, Genome Research, 27, 2025-2039. https://doi.org/10.1101/gr.215129.116
- O'Donnell ST, Ross RP, and Stanton C (2020). The progress of multi-omics technologies: Determining function in lactic acid bacteria using a systems level approach, Frontiers in Microbiology, 10, 3084.
- Paik S, Shak S, Tang G, et al. (2004). A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer, The New England Journal of Medicine, 351, 2817-2826. https://doi.org/10.1056/NEJMoa041588
- Pakhira MK, Bandyopadhyay S, and Maulik U (2004). Validity index for crisp and fuzzy clusters, Pattern Recognition, 37, 487-501. https://doi.org/10.1016/j.patcog.2003.06.005
- Park M and Park S (2020). One-Step spectral clustering of weighted variables on single-cell RNA-sequencing data, The Korean Journal of Applied Statistics, 33, 511-526. https://doi.org/10.5351/KJAS.2020.33.4.511
- Park S, Xu H, and Zhao H (2021). Integrating multidimensional data for clustering analysis with applications to cancer patient data, Journal of the American Statistical Association, 116, 14-26. https://doi.org/10.1080/01621459.2020.1730853
- Park S and Zhao H (2018). Spectral clustering based on learning similarity matrix, Bioinformatics, 34, 2069-2076. https://doi.org/10.1093/bioinformatics/bty050
- Park S and Zhao H (2019). Sparse principal component analysis with missing observations, Annals of Applied Statistics, 13, 1016-1042. https://doi.org/10.1214/18-AOAS1220
- Parker JS, Mullins M, Cheang MCU, et al. (2009). Supervised risk predictor of breast cancer sased on intrinsic subtypes, Journal of Clinical Oncology, 27, 1160-1167. https://doi.org/10.1200/JCO.2008.18.1370
- Perou C, Sorlie T, Eisen M et al. (2000). Molecular portraits of human breast tumours, Nature, 406, 747-752. https://doi.org/10.1038/35021093
- Saha A and Tewari A (2013). On the nonasymptotic convergence of cyclic coordinate descent methods, SIAM Journal on Optimization, 23, 576-601. https://doi.org/10.1137/110840054
- Soon WW, Hariharan M, and Snyder MP (2013). High-Throughput sequencing for biology and medicine, Molecular Systems Biology, 9, 640.
- Strehl A and Ghosh J (2003). Cluster ensembles-a knowledge reuse framework for combining multiple partitions, Journal of Machine Learning Research, 3, 583-617.
- Seo ST, SON SH, Lee IK, Jeong HC, and Kwon SH (2005). A novel cluster validation index, Korean Institute of Intelligent Systems, 15,171-174.
- van de Vijver MJ, He YD, van't Veer LJ, et al. (2002). A gene-expression signature as a predictor of survival in breast cancer, The New England Journal of Medicine, 347,1999-2009. https://doi.org/10.1056/NEJMoa021967
- Verhaak RGW, Hoadley KA, Purdom E et al. (2010). Integrated genomic analysis identified clinically relevant subtypes of glioblastoma characterized by abnormalitied in pdgfra, idh1, egfr, and nf1, Cancer Cell, 17, 98-110. https://doi.org/10.1016/j.ccr.2009.12.020
- Vilanova C and Porcar M (2016). Are multi-omics enough?, Nature Microbiology, 1, 1-2. https://doi.org/10.1038/nmicrobiol.2016.101
- Von Luxburg U (2007). A tutorial on spectral clustering, Statistics and Computing, 17, 395-416. https://doi.org/10.1007/s11222-007-9033-z
- Von Luxburg U, Bousquet O, and Belkin M (2004). Limits of spectral clustering, MIT Press, 8, 857-864.
- Wang B, Zhu J, Pierson E, Ramazzotti D, and Batzoglou S (2017). Visualization and analysis of single-cell rna-seq data by kernel-based similarity learning, Nature Methods, 14, 414-416. https://doi.org/10.1038/nmeth.4207
- Wang B, Mezlini AM, Demir F, Fiume M, Tu Z, Brudno M, Haibe-Kains B, and Goldenberg A (2014). Similarity network fusion for aggregating data types on a genomic scale, Nature Methods, 11, 333-337. https://doi.org/10.1038/nmeth.2810
- Wang C, Lue W, Kaalia R, Kumar P, and Rajapakse JC (2022). Network-Based integration of multi-omics data for clinical outcome prediction in neuroblastoma, Scientific Reports, 12, 15425.
- Weinstein JN, Collisson EA, Mills GB et al. (2013). The cancer genome atlas pan-cancer analysis project, Nature Genetics, 45, 1113-1120. https://doi.org/10.1038/ng.2764
- Witten D and Tibshirani R (2011). Penalized classification using Fisher's linear discriminant, Journal of Royal Statistical Society, Series B, 73, 753-772. https://doi.org/10.1111/j.1467-9868.2011.00783.x
- Xu Y and Yin W (2017). A globally convergent algorithm for nonconvex optimization based on block coordinate update, Journal of Scientific Computing, 72, 700-734. https://doi.org/10.1007/s10915-017-0376-0
- Zaman A, Wu W, and Bivona TG (2019). Targeting oncogenic BRAF: Past, present, and future, Cancers, 11, 1-19. https://doi.org/10.3390/cancers11081197
- Zhang E, Zhang M, Shi C, Sun L, Shan L, Zhang H, and Song Y (2020). An overview of advances in multi-omics analysis in prostate cancer, Life Science, 260, 118376.