DOI QR코드

DOI QR Code

Epigenetic Activation of Tensin 4 Promotes Gastric Cancer Progression

  • Haejeong Heo (Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Hee-Jin Kim (Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Keeok Haam (Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Hyun Ahm Sohn (Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Yang-Ji Shin (Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Hanyong Go (Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Hyo-Jung Jung (Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Jong-Hwan Kim (Korea Bioinformation Center, KRIBB) ;
  • Sang-Il Lee (Department of Surgery, College of Medicine, Chungnam National University) ;
  • Kyu-Sang Song (Department of Pathology, College of Medicine, Chungnam National University) ;
  • Min-Ju Kim (Department of Pharmacy, College of Pharmacy, Pusan National University) ;
  • Haeseung Lee (Department of Pharmacy, College of Pharmacy, Pusan National University) ;
  • Eun-Soo Kwon (Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Seon-Young Kim (Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST)) ;
  • Yong Sung Kim (Functional Genomics Institute, PDXen Biosystems Co.) ;
  • Mirang Kim (Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • Received : 2022.09.19
  • Accepted : 2022.12.18
  • Published : 2023.05.31

Abstract

Gastric cancer (GC) is a complex disease influenced by multiple genetic and epigenetic factors. Chronic inflammation caused by Helicobacter pylori infection and dietary risk factors can result in the accumulation of aberrant DNA methylation in gastric mucosa, which promotes GC development. Tensin 4 (TNS4), a member of the Tensin family of proteins, is localized to focal adhesion sites, which connect the extracellular matrix and cytoskeletal network. We identified upregulation of TNS4 in GC using quantitative reverse transcription PCR with 174 paired samples of GC tumors and adjacent normal tissues. Transcriptional activation of TNS4 occurred even during the early stage of tumor development. TNS4 depletion in GC cell lines that expressed high to moderate levels of TNS4, i.e., SNU-601, KATO III, and MKN74, reduced cell proliferation and migration, whereas ectopic expression of TNS4 in those lines that expressed lower levels of TNS4, i.e., SNU-638, MKN1, and MKN45 increased colony formation and cell migration. The promoter region of TNS4 was hypomethylated in GC cell lines that showed upregulation of TNS4. We also found a significant negative correlation between TNS4 expression and CpG methylation in 250 GC tumors based on The Cancer Genome Atlas (TCGA) data. This study elucidates the epigenetic mechanism of TNS4 activation and functional roles of TNS4 in GC development and progression and suggests a possible approach for future GC treatments.

Keywords

Acknowledgement

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (2019R1A2C1087104), the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI) funded by the Ministry of Health & Welfare, Republic of Korea (HI21C0538), National Research Council of Science & Technology (NST) Aging Convergence Research Center (CRC22011-400), and the Korea Research Institute of Bioscience & Biotechnology (KRIBB) Research Initiative Program (KGM5192221).

References

  1. Al-Ghamdi, S., Cachat, J., Albasri, A., Ahmed, M., Jackson, D., Zaitoun, A., Guppy, N., Otto, W.R., Alison, M.R., Kindle, K.B., et al. (2013). C-terminal tensin-like gene functions as an oncogene and promotes cell motility in pancreatic cancer. Pancreas 42, 135-140. https://doi.org/10.1097/MPA.0b013e3182557ceb
  2. Albasri, A., Aleskandarany, M., Benhasouna, A., Powe, D.G., Ellis, I.O., Ilyas, M., and Green, A.R. (2011). CTEN (C-terminal tensin-like), a novel oncogene overexpressed in invasive breast carcinoma of poor prognosis. Breast Cancer Res. Treat. 126, 47-54. https://doi.org/10.1007/s10549-010-0890-3
  3. Cancer Genome Atlas Research Network (2014). Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513, 202-209. https://doi.org/10.1038/nature13480
  4. Chiaravalli, A.M., Klersy, C., Vanoli, A., Ferretti, A., Capella, C., and Solcia, E. (2012). Histotype-based prognostic classification of gastric cancer. World J. Gastroenterol. 18, 896-904. https://doi.org/10.3748/wjg.v18.i9.896
  5. Chiurillo, M.A. (2015). Role of the Wnt/β-catenin pathway in gastric cancer: an in-depth literature review. World J. Exp. Med. 5, 84-102. https://doi.org/10.5493/wjem.v5.i2.84
  6. Crew, K.D. and Neugut, A.I. (2006). Epidemiology of gastric cancer. World J. Gastroenterol. 12, 354-362. https://doi.org/10.3748/wjg.v12.i3.354
  7. Das, P.M. and Singal, R. (2004). DNA methylation and cancer. J. Clin. Oncol. 22, 4632-4642. https://doi.org/10.1200/JCO.2004.07.151
  8. Ebrahimi, V., Soleimanian, A., Ebrahimi, T., Azargun, R., Yazdani, P., Eyvazi, S., and Tarhriz, V. (2020). Epigenetic modifications in gastric cancer: focus on DNA methylation. Gene 742, 144577.
  9. Fukamachi, H., Seol, H.S., Shimada, S., Funasaka, C., Baba, K., Kim, J.H., Park, Y.S., Kim, M.J., Kato, K., Inokuchi, M., et al. (2013). CD49f (high) cells retain sphere-forming and tumor-initiating activities in human gastric tumors. PLoS One 8, e72438.
  10. Ghandi, M., Huang, F.W., Jane-Valbuena, J., Kryukov, G.V., Lo, C.C., McDonald, E.R., 3rd, Barretina, J., Gelfand, E.T., Bielski, C.M., Li, H., et al. (2019). Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature 569, 503-508. https://doi.org/10.1038/s41586-019-1186-3
  11. Hanahan, D. and Weinberg, R.A. (2000). The hallmarks of cancer. Cell 100, 57-70. https://doi.org/10.1016/S0092-8674(00)81683-9
  12. Holik, A.Z., Young, M., Krzystyniak, J., Williams, G.T., Metzger, D., Shorning, B.Y., and Clarke, A.R. (2014). Brg1 loss attenuates aberrant wnt-signalling and prevents wnt-dependent tumourigenesis in the murine small intestine. PLoS Genet. 10, e1004453.
  13. Hong, S.Y., Shih, Y.P., Li, T., Carraway, K.L., 3rd, and Lo, S.H. (2013). CTEN prolongs signaling by EGFR through reducing its ligand-induced degradation. Cancer Res. 73, 5266-5276. https://doi.org/10.1158/0008-5472.CAN-12-4441
  14. Jones, P.A. and Taylor, S.M. (1980). Cellular differentiation, cytidine analogs and DNA methylation. Cell 20, 85-93. https://doi.org/10.1016/0092-8674(80)90237-8
  15. Kaneda, A., Matsusaka, K., Aburatani, H., and Fukayama, M. (2012). Epstein-Barr virus infection as an epigenetic driver of tumorigenesis. Cancer Res. 72, 3445-3450. https://doi.org/10.1158/0008-5472.CAN-11-3919
  16. Katz, M., Amit, I., Citri, A., Shay, T., Carvalho, S., Lavi, S., Milanezi, F., Lyass, L., Amariglio, N., Jacob-Hirsch, J., et al. (2007). A reciprocal tensin-3-cten switch mediates EGF-driven mammary cell migration. Nat. Cell Biol. 9, 961-969. https://doi.org/10.1038/ncb1622
  17. Kim, D., Lee, Y.S., Kim, D.H., and Bae, S.C. (2020). Lung cancer staging and associated genetic and epigenetic events. Mol. Cells 43, 1-9.
  18. Kim, M. and Costello, J. (2017). DNA methylation: an epigenetic mark of cellular memory. Exp. Mol. Med. 49, e322.
  19. Kim, M., Jang, H.R., Haam, K., Kang, T.W., Kim, J.H., Kim, S.Y., Noh, S.M., Song, K.S., Cho, J.S., Jeong, H.Y., et al. (2010). Frequent silencing of popeye domain-containing genes, BVES and POPDC3, is associated with promoter hypermethylation in gastric cancer. Carcinogenesis 31, 1685-1693. https://doi.org/10.1093/carcin/bgq144
  20. Kim, M., Jang, H.R., Kim, J.H., Noh, S.M., Song, K.S., Cho, J.S., Jeong, H.Y., Norman, J.C., Caswell, P.T., Kang, G.H., et al. (2008a). Epigenetic inactivation of protein kinase D1 in gastric cancer and its role in gastric cancer cell migration and invasion. Carcinogenesis 29, 629-637. https://doi.org/10.1093/carcin/bgm291
  21. Kim, M., Kim, J.H., Jang, H.R., Kim, H.M., Lee, C.W., Noh, S.M., Song, K.S., Cho, J.S., Jeong, H.Y., Hahn, Y., et al. (2008b). LRRC3B, encoding a leucine-rich repeat-containing protein, is a putative tumor suppressor gene in gastric cancer. Cancer Res. 68, 7147-7155. https://doi.org/10.1158/0008-5472.CAN-08-0667
  22. Kim, M., Lee, K.T., Jang, H.R., Kim, J.H., Noh, S.M., Song, K.S., Cho, J.S., Jeong, H.Y., Kim, S.Y., Yoo, H.S., et al. (2008c). Epigenetic down-regulation and suppressive role of DCBLD2 in gastric cancer cell proliferation and invasion. Mol. Cancer Res. 6, 222-230. https://doi.org/10.1158/1541-7786.MCR-07-0142
  23. Kim, S.K., Jang, H.R., Kim, J.H., Noh, S.M., Song, K.S., Kim, M.R., Kim, S.Y., Yeom, Y.I., Kim, N.S., Yoo, H.S., et al. (2006). The epigenetic silencing of LIMS2 in gastric cancer and its inhibitory effect on cell migration. Biochem. Biophys. Res. Commun. 349, 1032-1040. https://doi.org/10.1016/j.bbrc.2006.08.128
  24. Lauren, P. (1965). The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histoclinical classification. Acta Pathol. Microbiol. Scand. 64, 31-49. https://doi.org/10.1111/apm.1965.64.1.31
  25. Liao, Y.C. and Lo, S.H. (2021). Tensins - emerging insights into their domain functions, biological roles and disease relevance. J. Cell Sci. 134, jcs254029.
  26. Lim, B., Kim, J.H., Kim, M., and Kim, S.Y. (2016). Genomic and epigenomic heterogeneity in molecular subtypes of gastric cancer. World J. Gastroenterol. 22, 1190-1201. https://doi.org/10.3748/wjg.v22.i3.1190
  27. Lu, X., Gao, J., Zhang, Y., Zhao, T., Cai, H., and Zhang, T. (2018). CTEN induces epithelial-mesenchymal transition (EMT) and metastasis in non small cell lung cancer cells. PLoS One 13, e0198823.
  28. Maeda, M., Moro, H., and Ushijima, T. (2017). Mechanisms for the induction of gastric cancer by Helicobacter pylori infection: aberrant DNA methylation pathway. Gastric Cancer 20(Suppl 1), 8-15. https://doi.org/10.1007/s10120-016-0650-0
  29. Misono, S., Seki, N., Mizuno, K., Yamada, Y., Uchida, A., Sanada, H., Moriya, S., Kikkawa, N., Kumamoto, T., Suetsugu, T., et al. (2019). Molecular pathogenesis of gene regulation by the miR-150 duplex: miR-150-3p regulates TNS4 in lung adenocarcinoma. Cancers (Basel) 11, 601.
  30. Muharram, G., Sahgal, P., Korpela, T., De Franceschi, N., Kaukonen, R., Clark, K., Tulasne, D., Carpen, O., and Ivaska, J. (2014). Tensin-4-dependent MET stabilization is essential for survival and proliferation in carcinoma cells. Dev. Cell 29, 629-630. https://doi.org/10.1016/j.devcel.2014.05.018
  31. Nunez, J.K., Chen, J., Pommier, G.C., Cogan, J.Z., Replogle, J.M., Adriaens, C., Ramadoss, G.N., Shi, Q., Hung, K.L., Samelson, A.J., et al. (2021). Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing. Cell 184, 2503-2519.e17. https://doi.org/10.1016/j.cell.2021.03.025
  32. Qi, X., Sun, L., Wan, J., Xu, R., He, S., and Zhu, X. (2020). Tensin4 promotes invasion and migration of gastric cancer cells via regulating AKT/GSK-3β/ snail signaling pathway. Pathol. Res. Pract. 216, 153001.
  33. Raposo, T.P., Alfahed, A., Nateri, A.S., and Ilyas, M. (2020a). Tensin4 (TNS4) is upregulated by Wnt signalling in adenomas in multiple intestinal neoplasia (Min) mice. Int. J. Exp. Pathol. 101, 80-86. https://doi.org/10.1111/iep.12352
  34. Raposo, T.P., Susanti, S., and Ilyas, M. (2020b). Investigating TNS4 in the colorectal tumor microenvironment using 3D spheroid models of invasion. Adv. Biosyst. 4, e2000031.
  35. Sakashita, K., Mimori, K., Tanaka, F., Kamohara, Y., Inoue, H., Sawada, T., Hirakawa, K., and Mori, M. (2008). Prognostic relevance of Tensin4 expression in human gastric cancer. Ann. Surg. Oncol. 15, 2606-2613. https://doi.org/10.1245/s10434-008-9989-8
  36. Sawazaki, S., Oshima, T., Sakamaki, K., Aoyama, T., Sato, T., Shiozawa, M., Yoshikawa, T., Rino, Y., Imada, T., and Masuda, M. (2017). Clinical significance of tensin 4 gene expression in patients with gastric cancer. In Vivo 31, 1065-1071.
  37. Seo, E.H., Kim, H.J., Kim, J.H., Lim, B., Park, J.L., Kim, S.Y., Lee, S.I., Jeong, H.Y., Song, K.S., and Kim, Y.S. (2020). ONECUT2 upregulation is associated with CpG hypomethylation at promoter-proximal DNA in gastric cancer and triggers ACSL5. Int. J. Cancer 146, 3354-3368. https://doi.org/10.1002/ijc.32946
  38. Sharma, S., Kelly, T.K., and Jones, P.A. (2010). Epigenetics in cancer. Carcinogenesis 31, 27-36. https://doi.org/10.1093/carcin/bgp220
  39. Sjoestroem, C., Khosravi, S., Zhang, G., Martinka, M., and Li, G. (2013). C-terminal tensin-like protein is a novel prognostic marker for primary melanoma patients. PLoS One 8, e80492.
  40. Szasz, A.M., Lanczky, A., Nagy, A., Forster, S., Hark, K., Green, J.E., Boussioutas, A., Busuttil, R., Szabo, A., and Gyorffy, B. (2016). Cross-validation of survival associated biomarkers in gastric cancer using transcriptomic data of 1,065 patients. Oncotarget 7, 49322-49333. https://doi.org/10.18632/oncotarget.10337
  41. Tsherniak, A., Vazquez, F., Montgomery, P.G., Weir, B.A., Kryukov, G., Cowley, G.S., Gill, S., Harrington, W.F., Pantel, S., Krill-Burger, J.M., et al. (2017). Defining a cancer dependency map. Cell 170, 564-576.e16. https://doi.org/10.1016/j.cell.2017.06.010
  42. Wang, Z.K., Liu, J., Liu, C., Wang, F.Y., Chen, C.Y., and Zhang, X.H. (2012). Hypermethylation of adenomatous polyposis coli gene promoter is associated with novel Wnt signaling pathway in gastric adenomas. J. Gastroenterol. Hepatol. 27, 1629-1634. https://doi.org/10.1111/j.1440-1746.2012.07219.x
  43. Wu, W.M. and Liao, Y.C. (2018). Downregulation of C-terminal tensin-like protein (CTEN) suppresses prostate cell proliferation and contributes to acinar morphogenesis. Int. J. Mol. Sci. 19, 3190.
  44. Yao, B., Gui, T., Zeng, X., Deng, Y., Wang, Z., Wang, Y., Yang, D., Li, Q., Xu, P., Hu, R., et al. (2021). PRMT1-mediated H4R3me2a recruits SMARCA4 to promote colorectal cancer progression by enhancing EGFR signaling. Genome Med. 13, 58.
  45. Yoon, B.H., Kim, M., Kim, M.H., Kim, H.J., Kim, J.H., Kim, J.H., Kim, J., Kim, Y.S., Lee, D., Kang, S.J., et al. (2018). Dynamic transcriptome, DNA methylome, and DNA hydroxymethylome networks during T-cell lineage commitment. Mol. Cells 41, 953-963. https://doi.org/10.1158/1538-7445.AM2018-393
  46. Yoshida, M., Kijima, M., Akita, M., and Beppu, T. (1990). Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J. Biol. Chem. 265, 17174-17179. https://doi.org/10.1016/S0021-9258(17)44885-X
  47. Yuasa, Y. (2003). Control of gut differentiation and intestinal-type gastric carcinogenesis. Nat. Rev. Cancer 3, 592-600. https://doi.org/10.1038/nrc1141