DOI QR코드

DOI QR Code

Functional Analysis of CXCR3 Splicing Variants and Their Ligands Using NanoBiT-Based Molecular Interaction Assays

  • Huong Thi Nguyen (Department of Biomedical Sciences, College of Medicine, Korea University) ;
  • Sunghoon Hurh (Department of Biomedical Sciences, College of Medicine, Korea University) ;
  • Lan Phuong Nguyen (Department of Biomedical Sciences, College of Medicine, Korea University) ;
  • Thai Uy Nguyen (Department of Biomedical Sciences, College of Medicine, Korea University) ;
  • Hee-Kyung Park (Department of Biomedical Sciences, College of Medicine, Korea University) ;
  • Jae Young Seong (Department of Biomedical Sciences, College of Medicine, Korea University) ;
  • Cheol Soon Lee (Department of Biomedical Sciences, College of Medicine, Korea University) ;
  • Byung-Joo Ham (Department of Biomedical Sciences, College of Medicine, Korea University) ;
  • Jong-Ik Hwang (Department of Biomedical Sciences, College of Medicine, Korea University)
  • Received : 2022.06.13
  • Accepted : 2022.11.23
  • Published : 2023.05.31

Abstract

CXCR3 regulates leukocyte trafficking, maturation, and various pathophysiological conditions. Alternative splicing generates three CXCR3 isoforms in humans. Previous studies investigated the roles of CXCR3 isoforms, and some biochemical data are not correlated with biological relevance analyses. RT-PCR analyses indicate that most cells express all three splicing variants, suggesting that they may mutually affect the chemokine binding and cellular responses of other splicing variants. Here, we performed an integrative analysis of the functional relations among CXCR3 splicing variants and their chemokine-dependent signaling using NanoBiT live cell protein interaction assays. The results indicated that the CXCR3 N-terminal region affected cell surface expression levels and ligand-dependent activation. CXCR3A was efficiently expressed in the plasma membrane and responded to I-TAC, IP-10, and MIG chemokines. By contrast, CXCR3B had low plasma membrane expression and mediated I-TAC-stimulated cellular responses. CXCR3Alt was rarely expressed on the cell surface and did not mediate any cell responses to the tested chemokines; however, CXCR3Alt negatively affected the plasma membrane expression of CXCR3A and CXCR3B and their chemokine-stimulated cellular responses. Jurkat cells express endogenous CXCR3, and exogenous CXCR3A expression enhanced chemotactic activity in response to I-TAC, IP-10, and MIG. By contrast, exogenous expression of CXCR3B and CXCR3Alt eliminated or reduced the CXCR3A-induced chemotactic activity. The PF-4 chemokine did not activate any CXCR3-mediated cellular responses. NanoBiT technology are useful to integrative studies of CXCR3-mediated cell signaling, and expand our knowledge of the cellular responses mediated by molecular interactions among the splicing variants, including cell surface expression, ligand-dependent receptor activation, and chemotaxis.

Keywords

Acknowledgement

This work was supported by a National Research Foundation of Korea (NRF) Grants (2022R1F1A1074216, 2020M3E5D9080165) funded by the Korea government (MSIT).

References

  1. Berchiche, Y.A. and Sakmar, T.P. (2016). CXC chemokine receptor 3 alternative splice variants selectively activate different signaling pathways. Mol. Pharmacol. 90, 483-495. https://doi.org/10.1124/mol.116.105502
  2. Bodnar, R.J. (2015). Chemokine regulation of angiogenesis during wound healing. Adv. Wound Care (New Rochelle) 4, 641-650. https://doi.org/10.1089/wound.2014.0594
  3. Cheng, Z., Garvin, D., Paguio, A., Stecha, P., Wood, K., and Fan, F. (2010). Luciferase reporter assay system for deciphering GPCR pathways. Curr. Chem. Genomics 4, 84-91. https://doi.org/10.2174/1875397301004010084
  4. Clark-Lewis, I., Mattioli, I., Gong, J.H., and Loetscher, P. (2003). Structure-function relationship between the human chemokine receptor CXCR3 and its ligands. J. Biol. Chem. 278, 289-295. https://doi.org/10.1074/jbc.M209470200
  5. Cole, K.E., Strick, C.A., Paradis, T.J., Ogborne, K.T., Loetscher, M., Gladue, R.P., Lin, W., Boyd, J.G., Moser, B., Wood, D.E., et al. (1998). Interferon-inducible T cell alpha chemoattractant (I-TAC): a novel non-ELR CXC chemokine with potent activity on activated T cells through selective high affinity binding to CXCR3. J. Exp. Med. 187, 2009-2021. https://doi.org/10.1084/jem.187.12.2009
  6. Ehlert, J.E., Addison, C.A., Burdick, M.D., Kunkel, S.L., and Strieter, R.M. (2004). Identification and partial characterization of a variant of human CXCR3 generated by posttranscriptional exon skipping. J. Immunol. 173, 6234-6240. https://doi.org/10.4049/jimmunol.173.10.6234
  7. Eisman, R., Surrey, S., Ramachandran, B., Schwartz, E., and Poncz, M. (1990). Structural and functional comparison of the genes for human platelet factor 4 and PF4alt. Blood 76, 336-344. https://doi.org/10.1182/blood.V76.2.336.336
  8. Farber, J.M. (1997). Mig and IP-10: CXC chemokines that target lymphocytes. J. Leukoc. Biol. 61, 246-257. https://doi.org/10.1002/jlb.61.3.246
  9. Files, J.C., Malpass, T.W., Yee, E.K., Ritchie, J.L., and Harker, L.A. (1981). Studies of human plate alpha-granule release in vivo. Blood 58, 607-618. https://doi.org/10.1182/blood.V58.3.607.607
  10. Fleischer, J., Grage-Griebenow, E., Kasper, B., Heine, H., Ernst, M., Brandt, E., Flad, H.D., and Petersen, F. (2002). Platelet factor 4 inhibits proliferation and cytokine release of activated human T cells. J. Immunol. 169, 770-777. https://doi.org/10.4049/jimmunol.169.2.770
  11. Groom, J.R. and Luster, A.D. (2011). CXCR3 ligands: redundant, collaborative and antagonistic functions. Immunol. Cell Biol. 89, 207-215. https://doi.org/10.1038/icb.2010.158
  12. Harding, P.J., Attrill, H., Boehringer, J., Ross, S., Wadhams, G.H., Smith, E., Armitage, J.P., and Watts, A. (2009). Constitutive dimerization of the G-protein coupled receptor, neurotensin receptor 1, reconstituted into phospholipid bilayers. Biophys. J. 96, 964-973. https://doi.org/10.1016/j.bpj.2008.09.054
  13. Harmon, B.T., Orkunoglu-Suer, E.F., Adham, K., Larkin, J.S., Gordish-Dressman, H., Clarkson, P.M., Thompson, P.D., Angelopoulos, T.J., Gordon, P.M., Moyna, N.M., et al. (2010). CCL2 and CCR2 variants are associated with skeletal muscle strength and change in strength with resistance training. J. Appl. Physiol. (1985) 109, 1779-1785. https://doi.org/10.1152/japplphysiol.00633.2010
  14. Heise, C.E., Pahuja, A., Hudson, S.C., Mistry, M.S., Putnam, A.L., Gross, M.M., Gottlieb, P.A., Wade, W.S., Kiankarimi, M., Schwarz, D., et al. (2005). Pharmacological characterization of CXC chemokine receptor 3 ligands and a small molecule antagonist. J. Pharmacol. Exp. Ther. 313, 1263-1271. https://doi.org/10.1124/jpet.105.083683
  15. Jean-Charles, P.Y., Kaur, S., and Shenoy, S.K. (2017). G protein-coupled receptor signaling through β-arrestin-dependent mechanisms. J. Cardiovasc. Pharmacol. 70, 142-158. https://doi.org/10.1097/FJC.0000000000000482
  16. Kasper, B., Brandt, E., Brandau, S., and Petersen, F. (2007). Platelet factor 4 (CXC chemokine ligand 4) differentially regulates respiratory burst, survival, and cytokine expression of human monocytes by using distinct signaling pathways. J. Immunol. 179, 2584-2591. https://doi.org/10.4049/jimmunol.179.4.2584
  17. Kawada, K., Sonoshita, M., Sakashita, H., Takabayashi, A., Yamaoka, Y., Manabe, T., Inaba, K., Minato, N., Oshima, M., and Taketo, M.M. (2004). Pivotal role of CXCR3 in melanoma cell metastasis to lymph nodes. Cancer Res. 64, 4010-4017. https://doi.org/10.1158/0008-5472.CAN-03-1757
  18. Kuang, Y., Wu, Y., Jiang, H., and Wu, D. (1996). Selective G protein coupling by CC chemokine receptors (*). J. Biol. Chem. 271, 3975-3978. https://doi.org/10.1074/jbc.271.8.3975
  19. Lasagni, L., Francalanci, M., Annunziato, F., Lazzeri, E., Giannini, S., Cosmi, L., Sagrinati, C., Mazzinghi, B., Orlando, C., Maggi, E., et al. (2003). An alternatively spliced variant of CXCR3 mediates the inhibition of endothelial cell growth induced by IP-10, Mig, and I-TAC, and acts as functional receptor for platelet factor 4. J. Exp. Med. 197, 1537-1549. https://doi.org/10.1084/jem.20021897
  20. Li, H., Rong, S., Chen, C., Fan, Y., Chen, T., Wang, Y., Chen, D., Yang, C., and Yang, J. (2019). Disparate roles of CXCR3A and CXCR3B in regulating progressive properties of colorectal cancer cells. Mol. Carcinog. 58, 171-184. https://doi.org/10.1002/mc.22917
  21. Li, Z., Liu, J., Li, L., Shao, S., Wu, J., Bian, L., and He, Y. (2018). Epithelial mesenchymal transition induced by the CXCL9/CXCR3 axis through AKT activation promotes invasion and metastasis in tongue squamous cell carcinoma. Oncol. Rep. 39, 1356-1368.
  22. Loetscher, M., Gerber, B., Loetscher, P., Jones, S.A., Piali, L., Clark-Lewis, I., Baggiolini, M., and Moser, B. (1996). Chemokine receptor specific for IP10 and mig: structure, function, and expression in activated T-lymphocytes. J. Exp. Med. 184, 963-969. https://doi.org/10.1084/jem.184.3.963
  23. Lord, M.S., Cheng, B., Farrugia, B.L., McCarthy, S., and Whitelock, J.M. (2017). Platelet factor 4 binds to vascular proteoglycans and controls both growth factor activities and platelet activation. J. Biol. Chem. 292, 4054-4063. https://doi.org/10.1074/jbc.M116.760660
  24. Marti, F., Bertran, E., Llucia, M., Villen, E., Peiro, M., Garcia, J., and Rueda, F. (2002). Platelet factor 4 induces human natural killer cells to synthesize and release interleukin-8. J. Leukoc. Biol. 72, 590-597. https://doi.org/10.1189/jlb.72.3.590
  25. Mueller, A., Meiser, A., McDonagh, E.M., Fox, J.M., Petit, S.J., Xanthou, G., Williams, T.J., and Pease, J.E. (2008). CXCL4-induced migration of activated T lymphocytes is mediated by the chemokine receptor CXCR3. J. Leukoc. Biol. 83, 875-882. https://doi.org/10.1189/jlb.1006645
  26. Nehme, R., Carpenter, B., Singhal, A., Strege, A., Edwards, P.C., White, C.F., Du, H., Grisshammer, R., and Tate, C.G. (2017). Mini-G proteins: novel tools for studying GPCRs in their active conformation. PLoS One 12, e0175642.
  27. Neptune, E.R. and Bourne, H.R. (1997). Receptors induce chemotaxis by releasing the betagamma subunit of Gi, not by activating Gq or Gs. Proc. Natl. Acad. Sci. U. S. A. 94, 14489-14494. https://doi.org/10.1073/pnas.94.26.14489
  28. Nguyen, H.T., Reyes-Alcaraz, A., Yong, H.J., Nguyen, L.P., Park, H.K., Inoue, A., Lee, C.S., Seong, J.Y., and Hwang, J.I. (2020a). CXCR7: a β-arrestin-biased receptor that potentiates cell migration and recruits β-arrestin2 exclusively through Gβγ subunits and GRK2. Cell Biosci. 10, 134.
  29. Nguyen, L.P., Nguyen, H.T., Yong, H.J., Reyes-Alcaraz, A., Lee, Y.N., Park, H.K., Na, Y.H., Lee, C.S., Ham, B.J., Seong, J.Y., et al. (2020b). Establishment of a NanoBiT-based cytosolic Ca(2+) sensor by optimizing calmodulin-binding motif and protein expression levels. Mol. Cells 43, 909-920. https://doi.org/10.14348/molcells.2020.0144
  30. Ohmori, Y., Wyner, L., Narumi, S., Armstrong, D., Stoler, M., and Hamilton, T.A. (1993). Tumor necrosis factor-alpha induces cell type and tissue-specific expression of chemoattractant cytokines in vivo. Am. J. Pathol. 142, 861-870.
  31. Rajagopalan, L. and Rajarathnam, K. (2006). Structural basis of chemokine receptor function-a model for binding affinity and ligand selectivity. Biosci. Rep. 26, 325-339. https://doi.org/10.1007/s10540-006-9025-9
  32. Reynders, N., Abboud, D., Baragli, A., Noman, M.Z., Rogister, B., Niclou, S.P., Heveker, N., Janji, B., Hanson, J., Szpakowska, M., et al. (2019). The distinct roles of CXCR3 variants and their ligands in the tumor microenvironment. Cells 8, 613.
  33. Rosenkilde, M.M., McLean, K.A., Holst, P.J., and Schwartz, T.W. (2004). The CXC chemokine receptor encoded by herpesvirus saimiri, ECRF3, shows ligand-regulated signaling through Gi, Gq, and G12/13 proteins but constitutive signaling only through Gi and G12/13 proteins. J. Biol. Chem. 279, 32524-32533. https://doi.org/10.1074/jbc.M313392200
  34. Schenk, B.I., Petersen, F., Flad, H.D., and Brandt, E. (2002). Platelet-derived chemokines CXC chemokine ligand (CXCL)7, connective tissue-activating peptide III, and CXCL4 differentially affect and cross-regulate neutrophil adhesion and transendothelial migration. J. Immunol. 169, 2602-2610. https://doi.org/10.4049/jimmunol.169.5.2602
  35. Shi, G., Partida-Sanchez, S., Misra, R.S., Tighe, M., Borchers, M.T., Lee, J.J., Simon, M.I., and Lund, F.E. (2007). Identification of an alternative Gαq-dependent chemokine receptor signal transduction pathway in dendritic cells and granulocytes. J. Exp. Med. 204, 2705-2718. https://doi.org/10.1084/jem.20071267
  36. Shin, S.Y., Nam, J.S., Lim, Y., and Lee, Y.H. (2010). TNFalpha-exposed bone marrow-derived mesenchymal stem cells promote locomotion of MDA-MB-231 breast cancer cells through transcriptional activation of CXCR3 ligand chemokines. J. Biol. Chem. 285, 30731-30740. https://doi.org/10.1074/jbc.M110.128124
  37. Smith, J.S., Alagesan, P., Desai, N.K., Pack, T.F., Wu, J.H., Inoue, A., Freedman, N.J., and Rajagopal, S. (2017). C-X-C motif chemokine receptor 3 splice variants differentially activate beta-arrestins to regulate downstream signaling pathways. Mol. Pharmacol. 92, 136-150. https://doi.org/10.1124/mol.117.108522
  38. Springael, J.Y., Urizar, E., and Parmentier, M. (2005). Dimerization of chemokine receptors and its functional consequences. Cytokine Growth Factor Rev. 16, 611-623. https://doi.org/10.1016/j.cytogfr.2005.05.005
  39. Szpakowska, M., Fievez, V., Arumugan, K., Van Nuland, N., Schmit, J.C., and Chevigne, A. (2012). Function, diversity and therapeutic potential of the N-terminal domain of human chemokine receptors. Biochem. Pharmacol. 84, 1366-1380. https://doi.org/10.1016/j.bcp.2012.08.008
  40. Terrillon, S. and Bouvier, M. (2004). Roles of G-protein-coupled receptor dimerization: from ontogeny to signalling regulation. EMBO Rep. 5, 30-34. https://doi.org/10.1038/sj.embor.7400052
  41. Thomas, S.Y., Hou, R., Boyson, J.E., Means, T.K., Hess, C., Olson, D.P., Strominger, J.L., Brenner, M.B., Gumperz, J.E., Wilson, S.B., et al. (2003). CD1d-restricted NKT cells express a chemokine receptor profile indicative of Th1-type inflammatory homing cells. J. Immunol. 171, 2571-2580. https://doi.org/10.4049/jimmunol.171.5.2571
  42. Tokunaga, R., Zhang, W., Naseem, M., Puccini, A., Berger, M.D., Soni, S., McSkane, M., Baba, H., and Lenz, H.J. (2018). CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation - a target for novel cancer therapy. Cancer Treat. Rev. 63, 40-47. https://doi.org/10.1016/j.ctrv.2017.11.007
  43. Wan, Q., Okashah, N., Inoue, A., Nehme, R., Carpenter, B., Tate, C.G., and Lambert, N.A. (2018). Mini G protein probes for active G protein-coupled receptors (GPCRs) in live cells. J. Biol. Chem. 293, 7466-7473. https://doi.org/10.1074/jbc.RA118.001975
  44. Wang, C.J., Hsu, S.H., Hung, W.T., and Luo, C.W. (2009). Establishment of a chimeric reporting system for the universal detection and high-throughput screening of G protein-coupled receptors. Biosens. Bioelectron. 24, 2298-2304. https://doi.org/10.1016/j.bios.2008.11.023
  45. Weng, Y., Siciliano, S.J., Waldburger, K.E., Sirotina-Meisher, A., Staruch, M.J., Daugherty, B.L., Gould, S.L., Springer, M.S., and DeMartino, J.A. (1998). Binding and functional properties of recombinant and endogenous CXCR3 chemokine receptors. J. Biol. Chem. 273, 18288-18291. https://doi.org/10.1074/jbc.273.29.18288
  46. Windmuller, C., Zech, D., Avril, S., Boxberg, M., Dawidek, T., Schmalfeldt, B., Schmitt, M., Kiechle, M., and Bronger, H. (2017). CXCR3 mediates ascites-directed tumor cell migration and predicts poor outcome in ovarian cancer patients. Oncogenesis 6, e331.
  47. Wu, Q., Dhir, R., and Wells, A. (2012). Altered CXCR3 isoform expression regulates prostate cancer cell migration and invasion. Mol. Cancer 11, 3.
  48. Yagi, H., Tan, W., Dillenburg-Pilla, P., Armando, S., Amornphimoltham, P., Simaan, M., Weigert, R., Molinolo, A.A., Bouvier, M., and Gutkind, J.S. (2011). A synthetic biology approach reveals a CXCR4-G13-Rho signaling axis driving transendothelial migration of metastatic breast cancer cells. Sci. Signal. 4, ra60.
  49. Yamamoto, J., Adachi, Y., Onoue, Y., Adachi, Y.S., Okabe, Y., Itazawa, T., Toyoda, M., Seki, T., Morohashi, M., Matsushima, K., et al. (2000). Differential expression of the chemokine receptors by the Th1- and Th2-type effector populations within circulating CD4+ T cells. J. Leukoc. Biol. 68, 568-574.
  50. Yang, C., Zheng, W., and Du, W. (2016). CXCR3A contributes to the invasion and metastasis of gastric cancer cells. Oncol. Rep. 36, 1686-1692. https://doi.org/10.3892/or.2016.4953
  51. Zipin-Roitman, A., Meshel, T., Sagi-Assif, O., Shalmon, B., Avivi, C., Pfeffer, R.M., Witz, I.P., and Ben-Baruch, A. (2007). CXCL10 promotes invasion-related properties in human colorectal carcinoma cells. Cancer Res. 67, 3396-3405. https://doi.org/10.1158/0008-5472.CAN-06-3087