DOI QR코드

DOI QR Code

The Role of Splicing Factors in Adipogenesis and Thermogenesis

  • Yadanar Than Naing (Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School) ;
  • Lei Sun (Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School)
  • Received : 2022.12.27
  • Accepted : 2023.03.03
  • Published : 2023.05.31

Abstract

Obesity is a significant global health risk that can cause a range of serious metabolic problems, such as type 2 diabetes and cardiovascular diseases. Adipose tissue plays a pivotal role in regulating energy and lipid storage. New research has underlined the crucial role of splicing factors in the physiological and functional regulation of adipose tissue. By generating multiple transcripts from a single gene, alternative splicing allows for a greater diversity of the proteome and transcriptome, which subsequently influence adipocyte development and metabolism. In this review, we provide an outlook on the part of splicing factors in adipogenesis and thermogenesis, and investigate how the different spliced isoforms can affect the development and function of adipose tissue.

Keywords

References

  1. Aprile, M., Cataldi, S., Ambrosio, M.R., D'Esposito, V., Lim, K., Dietrich, A., Bluher, M., Savage, D.B., Formisano, P., Ciccodicola, A., et al. (2018). PPARγΔ5, a naturally occurring dominant-negative splice isoform, impairs PPARγ function and adipocyte differentiation. Cell Rep. 25, 1577-1592.e6. https://doi.org/10.1016/j.celrep.2018.10.035
  2. Baralle, F.E. and Giudice, J. (2017). Alternative splicing as a regulator of development and tissue identity. Nat. Rev. Mol. Cell Biol. 18, 437-451. https://doi.org/10.1038/nrm.2017.27
  3. Becher, T., Palanisamy, S., Kramer, D.J., Eljalby, M., Marx, S.J., Wibmer, A.G., Butler, S.D., Jiang, C.S., Vaughan, R., Schoder, H., et al. (2021). Brown adipose tissue is associated with cardiometabolic health. Nat. Med. 27, 58-65. https://doi.org/10.1038/s41591-020-1126-7
  4. Ben-Hur, V., Denichenko, P., Siegfried, Z., Maimon, A., Krainer, A., Davidson, B., and Karni, R. (2013). S6K1 alternative splicing modulates its oncogenic activity and regulates mTORC1. Cell Rep. 3, 103-115. https://doi.org/10.1016/j.celrep.2012.11.020
  5. Carter, G., Apostolatos, A., Patel, R., Mathur, A., Cooper, D., Murr, M., and Patel, N.A. (2013). Dysregulated alternative splicing pattern of PKCδ during differentiation of human preadipocytes represents distinct differences between lean and obese adipocytes. ISRN Obes. 2013, 161345.
  6. Chao, Y., Jiang, Y., Zhong, M., Wei, K., Hu, C., Qin, Y., Zuo, Y., Yang, L., Shen, Z., and Zou, C. (2021). Regulatory roles and mechanisms of alternative RNA splicing in adipogenesis and human metabolic health. Cell Biosci. 11, 66.
  7. Chawla, G., Lin, C.H., Han, A., Shiue, L., Ares, M., Jr., and Black, D.L. (2009). Sam68 regulates a set of alternatively spliced exons during neurogenesis. Mol. Cell. Biol. 29, 201-213. https://doi.org/10.1128/MCB.01349-08
  8. Chi, Y.L. and Lin, J.C. (2018). RBM4a modulates the impact of PRDM16 on development of brown adipocytes through an alternative splicing mechanism. Biochim. Biophys. Acta Mol. Cell Res. 1865(11 Pt A), 1515-1525. https://doi.org/10.1016/j.bbamcr.2018.08.001
  9. Cohen, P., Levy, J.D., Zhang, Y., Frontini, A., Kolodin, D.P., Svensson, K.J., Lo, J.C., Zeng, X., Ye, L., Khandekar, M.J., et al. (2014). Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell 156, 304-316. https://doi.org/10.1016/j.cell.2013.12.021
  10. Cowper, A.E., Caceres, J.F., Mayeda, A., and Screaton, G.R. (2001). Serine-arginine (SR) protein-like factors that antagonize authentic SR proteins and regulate alternative splicing. J. Biol. Chem. 276, 48908-48914. https://doi.org/10.1074/jbc.M103967200
  11. Das, S. and Krainer, A.R. (2014). Emerging functions of SRSF1, splicing factor and oncoprotein, in RNA metabolism and cancer. Mol. Cancer Res. 12, 1195-1204. https://doi.org/10.1158/1541-7786.MCR-14-0131
  12. David, C.J., Chen, M., Assanah, M., Canoll, P., and Manley, J.L. (2010). HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature 463, 364-368. https://doi.org/10.1038/nature08697
  13. Dichmann, D.S., Walentek, P., and Harland, R.M. (2015). The alternative splicing regulator Tra2b is required for somitogenesis and regulates splicing of an inhibitory Wnt11b isoform. Cell Rep. 10, 527-536. https://doi.org/10.1016/j.celrep.2014.12.046
  14. Feng, Y., Valley, M.T., Lazar, J., Yang, A.L., Bronson, R.T., Firestein, S., Coetzee, W.A., and Manley, J.L. (2009). SRp38 regulates alternative splicing and is required for Ca2+ handling in the embryonic heart. Dev. Cell 16, 528-538. https://doi.org/10.1016/j.devcel.2009.02.009
  15. Feracci, M., Foot, J.N., Grellscheid, S.N., Danilenko, M., Stehle, R., Gonchar, O., Kang, H.S., Dalgliesh, C., Meyer, N.H., Liu, Y., et al. (2016). Structural basis of RNA recognition and dimerization by the STAR proteins T-STAR and Sam68. Nat. Commun. 7, 10355.
  16. Gesta, S., Tseng, Y.H., and Kahn, C.R. (2007). Developmental origin of fat: tracking obesity to its source. Cell 131, 242-256. https://doi.org/10.1016/j.cell.2007.10.004
  17. Guo, J., Jia, J., and Jia, R. (2015). PTBP1 and PTBP2 impaired autoregulation of SRSF3 in cancer cells. Sci. Rep. 5, 14548.
  18. Hang, J., Wan, R., Yan, C., and Shi, Y. (2015). Structural basis of pre-mRNA splicing. Science 349, 1191-1198. https://doi.org/10.1126/science.aac8159
  19. Harms, M.J., Ishibashi, J., Wang, W., Lim, H.W., Goyama, S., Sato, T., Kurokawa, M., Won, K.J., and Seale, P. (2014). Prdm16 is required for the maintenance of brown adipocyte identity and function in adult mice. Cell Metab. 19, 593-604. https://doi.org/10.1016/j.cmet.2014.03.007
  20. Hui, X., Gu, P., Zhang, J., Nie, T., Pan, Y., Wu, D., Feng, T., Zhong, C., Wang, Y., Lam, K.S.L., et al. (2015). Adiponectin enhances cold-induced browning of subcutaneous adipose tissue via promoting M2 macrophage proliferation. Cell Metab. 22, 279-290. https://doi.org/10.1016/j.cmet.2015.06.004
  21. Hung, C.S. and Lin, J.C. (2020). Alternatively spliced MBNL1 isoforms exhibit differential influence on enhancing brown adipogenesis. Biochim. Biophys. Acta Gene Regul. Mech. 1863, 194437.
  22. Huot, M.E., Vogel, G., Zabarauskas, A., Ngo, C.T.A., Coulombe-Huntington, J., Majewski, J., and Richard, S. (2012). The Sam68 STAR RNA-binding protein regulates mTOR alternative splicing during adipogenesis. Mol. Cell 46, 187-199. https://doi.org/10.1016/j.molcel.2012.02.007
  23. Jensen, K.B., Musunuru, K., Lewis, H.A., Burley, S.K., and Darnell, R.B. (2000). The tetranucleotide UCAY directs the specific recognition of RNA by the Nova K-homology 3 domain. Proc. Natl. Acad. Sci. U. S. A. 97, 5740-5745. https://doi.org/10.1073/pnas.090553997
  24. Karni, R., de Stanchina, E., Lowe, S.W., Sinha, R., Mu, D., and Krainer, A.R. (2007). The gene encoding the splicing factor SF2/ASF is a proto-oncogene. Nat. Struct. Mol. Biol. 14, 185-193. https://doi.org/10.1038/nsmb1209
  25. Li, H., Cheng, Y., Wu, W., Liu, Y., Wei, N., Feng, X., Xie, Z., and Feng, Y. (2014). SRSF10 regulates alternative splicing and is required for adipocyte differentiation. Mol. Cell. Biol. 34, 2198-2207. https://doi.org/10.1128/MCB.01674-13
  26. Lim, K.H., Ferraris, L., Filloux, M.E., Raphael, B.J., and Fairbrother, W.G. (2011). Using positional distribution to identify splicing elements and predict pre-mRNA processing defects in human genes. Proc. Natl. Acad. Sci. U. S. A. 108, 11093-11098. https://doi.org/10.1073/pnas.1101135108
  27. Lin, J.C., Chi, Y.L., Peng, H.Y., and Lu, Y.H. (2016a). RBM4-Nova1-SRSF6 splicing cascade modulates the development of brown adipocytes. Biochim. Biophys. Acta 1859, 1368-1379. https://doi.org/10.1016/j.bbagrm.2016.08.006
  28. Lin, J.C., Lu, Y.H., Liu, Y.R., and Lin, Y.J. (2016b). RBM4a-regulated splicing cascade modulates the differentiation and metabolic activities of brown adipocytes. Sci. Rep. 6, 20665.
  29. Lin, J.C. and Tarn, W.Y. (2011). RBM4 down-regulates PTB and antagonizes its activity in muscle cell-specific alternative splicing. J. Cell Biol. 193, 509-520. https://doi.org/10.1083/jcb.201007131
  30. Lin, J.C., Tarn, W.Y., and Hsieh, W.K. (2014). Emerging role for RNA binding motif protein 4 in the development of brown adipocytes. Biochim. Biophys. Acta 1843, 769-779. https://doi.org/10.1016/j.bbamcr.2013.12.018
  31. Lin, J.C., Yan, Y.T., Hsieh, W.K., Peng, P.J., Su, C.H., and Tarn, W.Y. (2013). RBM4 promotes pancreas cell differentiation and insulin expression. Mol. Cell. Biol. 33, 319-327. https://doi.org/10.1128/MCB.01266-12
  32. Lin, Q., Taylor, S.J., and Shalloway, D. (1997). Specificity and determinants of Sam68 RNA binding: implications for the biological function of K homology domains. J. Biol. Chem. 272, 27274-27280. https://doi.org/10.1074/jbc.272.43.27274
  33. Liu, N., Zhou, K.I., Parisien, M., Dai, Q., Diatchenko, L., and Pan, T. (2017). N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein. Nucleic Acids Res. 45, 6051-6063. https://doi.org/10.1093/nar/gkx141
  34. Loomis, R.J., Naoe, Y., Parker, J.B., Savic, V., Bozovsky, M.R., Macfarlan, T., Manley, J.L., and Chakravarti, D. (2009). Chromatin binding of SRp20 and ASF/SF2 and dissociation from mitotic chromosomes is modulated by histone H3 serine 10 phosphorylation. Mol. Cell 33, 450-461. https://doi.org/10.1016/j.molcel.2009.02.003
  35. Mikoluk, C., Nagengast, A.A., and DiAngelo, J.R. (2018). The splicing factor transformer2 (tra2) functions in the Drosophila fat body to regulate lipid storage. Biochem. Biophys. Res. Commun. 495, 1528-1533. https://doi.org/10.1016/j.bbrc.2017.12.002
  36. Morigny, P., Boucher, J., Arner, P., and Langin, D. (2021). Lipid and glucose metabolism in white adipocytes: pathways, dysfunction and therapeutics. Nat. Rev. Endocrinol. 17, 276-295. https://doi.org/10.1038/s41574-021-00471-8
  37. Pan, Q., Shai, O., Lee, L.J., Frey, B.J., and Blencowe, B.J. (2008). Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet. 40, 1413-1415. https://doi.org/10.1038/ng.259
  38. Patel, R.S., Carter, G., Cooper, D.R., Apostolatos, H., and Patel, N.A. (2014). Transformer 2β homolog (Drosophila)(TRA2B) regulates protein kinase C δI (PKCδI) splice variant expression during 3T3L1 preadipocyte cell cycle. J. Biol. Chem. 289, 31662-31672. https://doi.org/10.1074/jbc.M114.592337
  39. Pedrotti, S., Bielli, P., Paronetto, M.P., Ciccosanti, F., Fimia, G.M., Stamm, S., Manley, J.L., and Sette, C. (2010). The splicing regulator Sam68 binds to a novel exonic splicing silencer and functions in SMN2 alternative splicing in spinal muscular atrophy. EMBO J. 29, 1235-1247. https://doi.org/10.1038/emboj.2010.19
  40. Pelisch, F., Gerez, J., Druker, J., Schor, I.E., Munoz, M.J., Risso, G., Petrillo, E., Westman, B.J., Lamond, A.I., Arzt, E., et al. (2010). The serine/arginine-rich protein SF2/ASF regulates protein sumoylation. Proc. Natl. Acad. Sci. U. S. A. 107, 16119-16124. https://doi.org/10.1073/pnas.1004653107
  41. Peng, H.Y., Liang, Y.C., Tan, T.H., Chuang, H.C., Lin, Y.J., and Lin, J.C. (2018). RBM4a-SRSF3-MAP4K4 splicing cascade constitutes a molecular mechanism for regulating brown adipogenesis. Int. J. Mol. Sci. 19, 2646.
  42. Pihlajamaki, J., Lerin, C., Itkonen, P., Boes, T., Floss, T., Schroeder, J., Dearie, F., Crunkhorn, S., Burak, F., Jimenez-Chillaron, J.C., et al. (2011). Expression of the splicing factor gene SFRS10 is reduced in human obesity and contributes to enhanced lipogenesis. Cell Metab. 14, 208-218. https://doi.org/10.1016/j.cmet.2011.06.007
  43. Pradeepa, M.M., Sutherland, H.G., Ule, J., Grimes, G.R., and Bickmore, W.A. (2012). Psip1/Ledgf p52 binds methylated histone H3K36 and splicing factors and contributes to the regulation of alternative splicing. PLoS Genet. 8, e1002717.
  44. Ray, D., Kazan, H., Chan, E.T., Castillo, L.P., Chaudhry, S., Talukder, S., Blencowe, B.J., Morris, Q., and Hughes, T.R. (2009). Rapid and systematic analysis of the RNA recognition specificities of RNA-binding proteins. Nat. Biotechnol. 27, 667-670. https://doi.org/10.1038/nbt.1550
  45. Sakers, A., De Siqueira, M.K., Seale, P., and Villanueva, C.J. (2022). Adipose-tissue plasticity in health and disease. Cell 185, 419-446. https://doi.org/10.1016/j.cell.2021.12.016
  46. Shin, C., Feng, Y., and Manley, J.L. (2004). Dephosphorylated SRp38 acts as a splicing repressor in response to heat shock. Nature 427, 553-558. https://doi.org/10.1038/nature02288
  47. Song, J. and Richard, S. (2015). Sam68 regulates S6K1 alternative splicing during adipogenesis. Mol. Cell. Biol. 35, 1926-1939. https://doi.org/10.1128/MCB.01488-14
  48. Subramania, S., Gagne, L.M., Campagne, S., Fort, V., O'Sullivan, J., Mocaer, K., Feldmuller, M., Masson, J.Y., Allain, F.H.T., Hussein, S.M., et al. (2019). SAM68 interaction with U1A modulates U1 snRNP recruitment and regulates mTor pre-mRNA splicing. Nucleic Acids Res. 47, 4181-4197. https://doi.org/10.1093/nar/gkz099
  49. Tacke, R., Tohyama, M., Ogawa, S., and Manley, J.L. (1998). Human Tra2 proteins are sequence-specific activators of pre-mRNA splicing. Cell 93, 139-148. https://doi.org/10.1016/S0092-8674(00)81153-8
  50. Tavares, M.R., Pavan, I.C., Amaral, C.L., Meneguello, L., Luchessi, A.D., and Simabuco, F.M. (2015). The S6K protein family in health and disease. Life Sci. 131, 1-10. https://doi.org/10.1016/j.lfs.2015.03.001
  51. Trayhurn, P., Hoggard, N., Mercer, J.G., and Rayner, D.V. (1999). Leptin: fundamental aspects. Int. J. Obes. Relat. Metab. Disord. 23 Suppl 1, 22-28. https://doi.org/10.1038/sj.ijo.0800791
  52. Ule, J. and Blencowe, B.J. (2019). Alternative splicing regulatory networks: functions, mechanisms, and evolution. Mol. Cell 76, 329-345. https://doi.org/10.1016/j.molcel.2019.09.017
  53. Vernia, S., Edwards, Y.J., Han, M.S., Cavanagh-Kyros, J., Barrett, T., Kim, J.K., and Davis, R.J. (2016). An alternative splicing program promotes adipose tissue thermogenesis. Elife 5, e17672.
  54. Wang, Y., Chen, D., Qian, H., Tsai, Y.S., Shao, S., Liu, Q., Dominguez, D., and Wang, Z. (2014). The splicing factor RBM4 controls apoptosis, proliferation, and migration to suppress tumor progression. Cancer Cell 26, 374-389. https://doi.org/10.1016/j.ccr.2014.07.010
  55. Wei, N., Cheng, Y., Wang, Z., Liu, Y., Luo, C., Liu, L., Chen, L., Xie, Z., Lu, Y., and Feng, Y. (2015). SRSF10 plays a role in myoblast differentiation and glucose production via regulation of alternative splicing. Cell Rep. 13, 1647-1657. https://doi.org/10.1016/j.celrep.2015.10.038
  56. Wong, C.M., Xu, L., and Yau, M.Y.C. (2018). Alternative mRNA splicing in the pathogenesis of obesity. Int. J. Mol. Sci. 19, 632.
  57. Xiao, W., Adhikari, S., Dahal, U., Chen, Y.S., Hao, Y.J., Sun, B.F., Sun, H.Y., Li, A., Ping, X.L., Lai, W.Y., et al. (2016). Nuclear m6A reader YTHDC1 regulates mRNA splicing. Mol. Cell 61, 507-519. https://doi.org/10.1016/j.molcel.2016.01.012
  58. Zhou, X., Li, X., Cheng, Y., Wu, W., Xie, Z., Xi, Q., Han, J., Wu, G., Fang, J., and Feng, Y. (2014). BCLAF1 and its splicing regulator SRSF10 regulate the tumorigenic potential of colon cancer cells. Nat. Commun. 5, 4581.