DOI QR코드

DOI QR Code

The Role of Pyruvate Metabolism in Mitochondrial Quality Control and Inflammation

  • Min-Ji Kim (Department of Internal Medicine, School of Medicine, Kyungpook National University Chilgok Hospital) ;
  • Hoyul Lee (Research Institute of Aging and Metabolism, Kyungpook National University) ;
  • Dipanjan Chanda (Research Institute of Aging and Metabolism, Kyungpook National University) ;
  • Themis Thoudam (Research Institute of Aging and Metabolism, Kyungpook National University) ;
  • Hyeon-Ji Kang (Research Institute of Aging and Metabolism, Kyungpook National University) ;
  • Robert A. Harris (Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center) ;
  • In-Kyu Lee (Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University)
  • Received : 2022.08.18
  • Accepted : 2022.11.18
  • Published : 2023.05.31

Abstract

Pyruvate metabolism, a key pathway in glycolysis and oxidative phosphorylation, is crucial for energy homeostasis and mitochondrial quality control (MQC), including fusion/fission dynamics and mitophagy. Alterations in pyruvate flux and MQC are associated with reactive oxygen species accumulation and Ca2+ flux into the mitochondria, which can induce mitochondrial ultrastructural changes, mitochondrial dysfunction and metabolic dysregulation. Perturbations in MQC are emerging as a central mechanism for the pathogenesis of various metabolic diseases, such as neurodegenerative diseases, diabetes and insulin resistance-related diseases. Mitochondrial Ca2+ regulates the pyruvate dehydrogenase complex (PDC), which is central to pyruvate metabolism, by promoting its dephosphorylation. Increase of pyruvate dehydrogenase kinase (PDK) is associated with perturbation of mitochondria-associated membranes (MAMs) function and Ca2+ flux. Pyruvate metabolism also plays an important role in immune cell activation and function, dysregulation of which also leads to insulin resistance and inflammatory disease. Pyruvate metabolism affects macrophage polarization, mitochondrial dynamics and MAM formation, which are critical in determining macrophage function and immune response. MAMs and MQCs have also been intensively studied in macrophage and T cell immunity. Metabolic reprogramming connected with pyruvate metabolism, mitochondrial dynamics and MAM formation are important to macrophages polarization (M1/M2) and function. T cell differentiation is also directly linked to pyruvate metabolism, with inhibition of pyruvate oxidation by PDKs promoting proinflammatory T cell polarization. This article provides a brief review on the emerging role of pyruvate metabolism in MQC and MAM function, and how dysfunction in these processes leads to metabolic and inflammatory diseases.

Keywords

Acknowledgement

M.-J.K. is supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2022R1C1C101089811). H.L. is supported by the Basic Science Research Program, through the NRF of Korea government (MSIT) (2020R1C1C1009322). H.-J.K. is supported by Basic Science Research Program through the NRF of Korea funded by the Ministry of Education (2019R1I1A1A01062968). I.-K.L. is supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant No. HR22C1832).

References

  1. Balaban, R.S. (2009). The role of Ca2+ signaling in the coordination of mitochondrial ATP production with cardiac work. Biochim. Biophys. Acta 1787, 1334-1341. https://doi.org/10.1016/j.bbabio.2009.05.011
  2. Bantug, G.R., Fischer, M., Grahlert, J., Balmer, M.L., Unterstab, G., Develioglu, L., Steiner, R., Zhang, L., Costa, A.S.H., Gubser, P.M., et al. (2018). Mitochondria-endoplasmic reticulum contact sites function as immunometabolic hubs that orchestrate the rapid recall response of memory CD8+ T cells. Immunity 48, 542-555.e6. https://doi.org/10.1016/j.immuni.2018.02.012
  3. Bian, L., Josefsson, E., Jonsson, I.M., Verdrengh, M., Ohlsson, C., Bokarewa, M., Tarkowski, A., and Magnusson, M. (2009). Dichloroacetate alleviates development of collagen II-induced arthritis in female DBA/1 mice. Arthritis Res. Ther. 11, R132.
  4. Buck, M.D., O'Sullivan, D., Klein Geltink, R.I., Curtis, J.D., Chang, C.H., Sanin, D.E., Qiu, J., Kretz, O., Braas, D., van der Windt, G.J., et al. (2016). Mitochondrial dynamics controls T cell fate through metabolic programming. Cell 166, 63-76. https://doi.org/10.1016/j.cell.2016.05.035
  5. Cardenas, C., Miller, R.A., Smith, I., Bui, T., Molgo, J., Muller, M., Vais, H., Cheung, K.H., Yang, J., Parker, I., et al. (2010). Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell 142, 270-283. https://doi.org/10.1016/j.cell.2010.06.007
  6. Cardenas, C., Muller, M., McNeal, A., Lovy, A., Jana, F., Bustos, G., Urra, F., Smith, N., Molgo, J., Diehl, J.A., et al. (2016). Selective vulnerability of cancer cells by inhibition of Ca2+ transfer from endoplasmic reticulum to mitochondria. Cell Rep. 14, 2313-2324. https://doi.org/10.1016/j.celrep.2016.02.030
  7. Chen, P.M., Wilson, P.C., Shyer, J.A., Veselits, M., Steach, H.R., Cui, C., Moeckel, G., Clark, M.R., and Craft, J. (2020). Kidney tissue hypoxia dictates T cell-mediated injury in murine lupus nephritis. Sci. Transl. Med. 12, eaay1620.
  8. Cho, D.H., Kim, J.K., and Jo, E.K. (2020). Mitophagy and innate immunity in infection. Mol. Cells 43, 10-22.
  9. Cho, H.M., Ryu, J.R., Jo, Y., Seo, T.W., Choi, Y.N., Kim, J.H., Chung, J.M., Cho, B., Kang, H.C., Yu, S.W., et al. (2019). Drp1-Zip1 interaction regulates mitochondrial quality surveillance system. Mol. Cell 73, 364-376.e8. https://doi.org/10.1016/j.molcel.2018.11.009
  10. Cogliati, S., Frezza, C., Soriano, M.E., Varanita, T., Quintana-Cabrera, R., Corrado, M., Cipolat, S., Costa, V., Casarin, A., Gomes, L.C., et al. (2013). Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell 155, 160-171. https://doi.org/10.1016/j.cell.2013.08.032
  11. Csordas, G., Renken, C., Varnai, P., Walter, L., Weaver, D., Buttle, K.F., Balla, T., Mannella, C.A., and Hajnoczky, G. (2006). Structural and functional features and significance of the physical linkage between ER and mitochondria. J. Cell Biol. 174, 915-921. https://doi.org/10.1083/jcb.200604016
  12. Deng, X., Wang, Q., Cheng, M., Chen, Y., Yan, X., Guo, R., Sun, L., Li, Y., and Liu, Y. (2020). Pyruvate dehydrogenase kinase 1 interferes with glucose metabolism reprogramming and mitochondrial quality control to aggravate stress damage in cancer. J. Cancer 11, 962-973. https://doi.org/10.7150/jca.34330
  13. Di Mattia, T., Wilhelm, L.P., Ikhlef, S., Wendling, C., Spehner, D., Nomine, Y., Giordano, F., Mathelin, C., Drin, G., Tomasetto, C., et al. (2018). Identification of MOSPD2, a novel scaffold for endoplasmic reticulum membrane contact sites. EMBO Rep. 19, e45453.
  14. Dumitru, C., Kabat, A.M., and Maloy, K.J. (2018). Metabolic adaptations of CD4+ T cells in inflammatory disease. Front. Immunol. 9, 540.
  15. Eleftheriadis, T., Sounidaki, M., Pissas, G., Antoniadi, G., Liakopoulos, V., and Stefanidis, I. (2016). In human alloreactive CD4+ T-cells, dichloroacetate inhibits aerobic glycolysis, induces apoptosis and favors differentiation towards the regulatory T-cell subset instead of effector T-cell subsets. Mol. Med. Rep. 13, 3370-3376. https://doi.org/10.3892/mmr.2016.4912
  16. Foster, D.W. (2012). Malonyl-CoA: the regulator of fatty acid synthesis and oxidation. J. Clin. Invest. 122, 1958-1959. https://doi.org/10.1172/JCI63967
  17. Gao, F., Reynolds, M.B., Passalacqua, K.D., Sexton, J.Z., Abuaita, B.H., and O'Riordan, M.X.D. (2021). The mitochondrial fission regulator DRP1 controls post-transcriptional regulation of TNF-alpha. Front. Cell. Infect. Microbiol. 10, 593805.
  18. Gergely, P., Jr., Niland, B., Gonchoroff, N., Pullmann, R., Jr., Phillips, P.E., and Perl, A. (2002). Persistent mitochondrial hyperpolarization, increased reactive oxygen intermediate production, and cytoplasmic alkalinization characterize altered IL-10 signaling in patients with systemic lupus erythematosus. J. Immunol. 169, 1092-1101. https://doi.org/10.4049/jimmunol.169.2.1092
  19. Gerriets, V.A., Kishton, R.J., Nichols, A.G., Macintyre, A.N., Inoue, M., Ilkayeva, O., Winter, P.S., Liu, X., Priyadharshini, B., Slawinska, M.E., et al. (2015). Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation. J. Clin. Invest. 125, 194-207. https://doi.org/10.1172/JCI76012
  20. Giacomello, M., Pyakurel, A., Glytsou, C., and Scorrano, L. (2020). The cell biology of mitochondrial membrane dynamics. Nat. Rev. Mol. Cell Biol. 21, 204-224. https://doi.org/10.1038/s41580-020-0210-7
  21. Go, Y., Jeong, J.Y., Jeoung, N.H., Jeon, J.H., Park, B.Y., Kang, H.J., Ha, C.M., Choi, Y.K., Lee, S.J., Ham, H.J., et al. (2016). Inhibition of pyruvate dehydrogenase kinase 2 protects against hepatic steatosis through modulation of tricarboxylic acid cycle anaplerosis and ketogenesis. Diabetes 65, 2876-2887. https://doi.org/10.2337/db16-0223
  22. Gordaliza-Alaguero, I., Canto, C., and Zorzano, A. (2019). Metabolic implications of organelle-mitochondria communication. EMBO Rep. 20, e47928.
  23. Harris, R.A., Bowker-Kinley, M.M., Huang, B., and Wu, P. (2002). Regulation of the activity of the pyruvate dehydrogenase complex. Adv. Enzyme Regul. 42, 249-259. https://doi.org/10.1016/S0065-2571(01)00061-9
  24. Honrath, B., Metz, I., Bendridi, N., Rieusset, J., Culmsee, C., and Dolga, A.M. (2017). Glucose-regulated protein 75 determines ER-mitochondrial coupling and sensitivity to oxidative stress in neuronal cells. Cell Death Discov. 3, 17076.
  25. Imam, T., Park, S., Kaplan, M.H., and Olson, M.R. (2018). Effector T helper cell subsets in inflammatory bowel diseases. Front. Immunol. 9, 1212.
  26. Iwasawa, R., Mahul-Mellier, A.L., Datler, C., Pazarentzos, E., and Grimm, S. (2011). Fis1 and Bap31 bridge the mitochondria-ER interface to establish a platform for apoptosis induction. EMBO J. 30, 556-568. https://doi.org/10.1038/emboj.2010.346
  27. Jeoung, N.H., Wu, P., Joshi, M.A., Jaskiewicz, J., Bock, C.B., Depaoli-Roach, A.A., and Harris, R.A. (2006). Role of pyruvate dehydrogenase kinase isoenzyme 4 (PDHK4) in glucose homoeostasis during starvation. Biochem. J. 397, 417-425. https://doi.org/10.1042/BJ20060125
  28. Jiang, C., Zhang, J., Xie, H., Guan, H., Li, R., Chen, C., Dong, H., Zhou, Y., and Zhang, W. (2022). Baicalein suppresses lipopolysaccharide-induced acute lung injury by regulating Drp1-dependent mitochondrial fission of macrophages. Biomed. Pharmacother. 145, 112408.
  29. Jun, S., Mahesula, S., Mathews, T.P., Martin-Sandoval, M.S., Zhao, Z., Piskounova, E., and Agathocleous, M. (2021). The requirement for pyruvate dehydrogenase in leukemogenesis depends on cell lineage. Cell Metab. 33, 1777-1792.e8. https://doi.org/10.1016/j.cmet.2021.07.016
  30. Kapetanovic, R., Afroz, S.F., Ramnath, D., Lawrence, G.M., Okada, T., Curson, J.E., de Bruin, J., Fairlie, D.P., Schroder, K., St John, J.C., et al. (2020). Lipopolysaccharide promotes Drp1-dependent mitochondrial fission and associated inflammatory responses in macrophages. Immunol. Cell Biol. 98, 528-539. https://doi.org/10.1111/imcb.12363
  31. Khodzhaeva, V., Schreiber, Y., Geisslinger, G., Brandes, R.P., Brune, B., and Namgaladze, D. (2021). Mitofusin 2 deficiency causes pro-inflammatory effects in human primary macrophages. Front. Immunol. 12, 723683.
  32. Kono, M., Yoshida, N., Maeda, K., Skinner, N.E., Pan, W., Kyttaris, V.C., Tsokos, M.G., and Tsokos, G.C. (2018). Pyruvate dehydrogenase phosphatase catalytic subunit 2 limits Th17 differentiation. Proc. Natl. Acad. Sci. U. S. A. 115, 9288-9293. https://doi.org/10.1073/pnas.1805717115
  33. Lee, H., Jeon, J.H., Lee, Y.J., Kim, M.J., Kwon, W.H., Chanda, D., Thoudam, T., Pagire, H.S., Pagire, S.H., Ahn, J.H., et al. (2023). Inhibition of pyruvate dehydrogenase kinase 4 in CD4+ T cells ameliorates intestinal inflammation. Cell. Mol. Gastroenterol. Hepatol. 15, 439-461. https://doi.org/10.1016/j.jcmgh.2022.09.016
  34. Lin, H.C., Chen, Y.J., Wei, Y.H., Lin, H.A., Chen, C.C., Liu, T.F., Hsieh, Y.L., Huang, K.Y., Lin, K.H., Wang, H.H., et al. (2021). Lactic acid fermentation is required for NLRP3 inflammasome activation. Front. Immunol. 12, 630380.
  35. Makita, N., Ishiguro, J., Suzuki, K., and Nara, F. (2017). Dichloroacetate induces regulatory T-cell differentiation and suppresses Th17-cell differentiation by pyruvate dehydrogenase kinase-independent mechanism. J. Pharm. Pharmacol. 69, 43-51. https://doi.org/10.1111/jphp.12655
  36. Martinez-Reyes, I. and Chandel, N.S. (2020). Mitochondrial TCA cycle metabolites control physiology and disease. Nat. Commun. 11, 102.
  37. Menk, A.V., Scharping, N.E., Moreci, R.S., Zeng, X., Guy, C., Salvatore, S., Bae, H., Xie, J., Young, H.A., Wendell, S.G., et al. (2018). Early TCR signaling induces rapid aerobic glycolysis enabling distinct acute T cell effector functions. Cell Rep. 22, 1509-1521. https://doi.org/10.1016/j.celrep.2018.01.040
  38. Min, B.K., Park, S., Kang, H.J., Kim, D.W., Ham, H.J., Ha, C.M., Choi, B.J., Lee, J.Y., Oh, C.J., Yoo, E.K., et al. (2019). Pyruvate dehydrogenase kinase is a metabolic checkpoint for polarization of macrophages to the M1 phenotype. Front. Immunol. 10, 944.
  39. Na, Y.R., Jung, D., Song, J., Park, J.W., Hong, J.J., and Seok, S.H. (2020). Pyruvate dehydrogenase kinase is a negative regulator of interleukin-10 production in macrophages. J. Mol. Cell Biol. 12, 543-555. https://doi.org/10.1093/jmcb/mjz113
  40. Orvedahl, A., Sumpter, R., Jr., Xiao, G., Ng, A., Zou, Z., Tang, Y., Narimatsu, M., Gilpin, C., Sun, Q., Roth, M., et al. (2011). Image-based genome-wide siRNA screen identifies selective autophagy factors. Nature 480, 113-117. https://doi.org/10.1038/nature10546
  41. Ostroukhova, M., Goplen, N., Karim, M.Z., Michalec, L., Guo, L., Liang, Q., and Alam, R. (2012). The role of low-level lactate production in airway inflammation in asthma. Am. J. Physiol. Lung Cell. Mol. Physiol. 302, L300-L307. https://doi.org/10.1152/ajplung.00221.2011
  42. Paillard, M., Tubbs, E., Thiebaut, P.A., Gomez, L., Fauconnier, J., Da Silva, C.C., Teixeira, G., Mewton, N., Belaidi, E., Durand, A., et al. (2013). Depressing mitochondria-reticulum interactions protects cardiomyocytes from lethal hypoxia-reoxygenation injury. Circulation 128, 1555-1565. https://doi.org/10.1161/CIRCULATIONAHA.113.001225
  43. Pajuelo-Reguera, D., Alan, L., Olejar, T., and Jezek, P. (2015). Dichloroacetate stimulates changes in the mitochondrial network morphology via partial mitophagy in human SH-SY5Y neuroblastoma cells. Int. J. Oncol. 46, 2409-2418. https://doi.org/10.3892/ijo.2015.2953
  44. Palikaras, K., Lionaki, E., and Tavernarakis, N. (2018). Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat. Cell Biol. 20, 1013-1022. https://doi.org/10.1038/s41556-018-0176-2
  45. Palsson-McDermott, E.M. and O'Neill, L.A.J. (2020). Targeting immunometabolism as an anti-inflammatory strategy. Cell Res. 30, 300-314. https://doi.org/10.1038/s41422-020-0291-z
  46. Park, B.Y., Jeon, J.H., Go, Y., Ham, H.J., Kim, J.E., Yoo, E.K., Kwon, W.H., Jeoung, N.H., Jeon, Y.H., Koo, S.H., et al. (2018a). PDK4 deficiency suppresses hepatic glucagon signaling by decreasing cAMP levels. Diabetes 67, 2054-2068. https://doi.org/10.2337/db17-1529
  47. Park, S., Choi, S.G., Yoo, S.M., Nah, J., Jeong, E., Kim, H., and Jung, Y.K. (2015). Pyruvate stimulates mitophagy via PINK1 stabilization. Cell. Signal. 27, 1824-1830. https://doi.org/10.1016/j.cellsig.2015.05.020
  48. Park, S., Jeon, J.H., Min, B.K., Ha, C.M., Thoudam, T., Park, B.Y., and Lee, I.K. (2018b). Role of the pyruvate dehydrogenase complex in metabolic remodeling: differential pyruvate dehydrogenase complex functions in metabolism. Diabetes Metab. J. 42, 270-281. https://doi.org/10.4093/dmj.2018.0101
  49. Patel, M.S., Nemeria, N.S., Furey, W., and Jordan, F. (2014). The pyruvate dehydrogenase complexes: structure-based function and regulation. J. Biol. Chem. 289, 16615-16623. https://doi.org/10.1074/jbc.R114.563148
  50. Picca, A., Mankowski, R.T., Burman, J.L., Donisi, L., Kim, J.S., Marzetti, E., and Leeuwenburgh, C. (2018). Mitochondrial quality control mechanisms as molecular targets in cardiac ageing. Nat. Rev. Cardiol. 15, 543-554. https://doi.org/10.1038/s41569-018-0059-z
  51. Ramstead, A.G., Wallace, J.A., Lee, S.H., Bauer, K.M., Tang, W.W., Ekiz, H.A., Lane, T.E., Cluntun, A.A., Bettini, M.L., Round, J.L., et al. (2020). Mitochondrial pyruvate carrier 1 promotes peripheral T Cell homeostasis through metabolic regulation of thymic development. Cell Rep. 30, 2889-2899.e6. https://doi.org/10.1016/j.celrep.2020.02.042
  52. Rizzuto, R., Pinton, P., Carrington, W., Fay, F.S., Fogarty, K.E., Lifshitz, L.M., Tuft, R.A., and Pozzan, T. (1998). Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280, 1763-1766. https://doi.org/10.1126/science.280.5370.1763
  53. Shi, G. and McQuibban, G.A. (2017). The mitochondrial rhomboid protease PARL is regulated by PDK2 to integrate mitochondrial quality control and metabolism. Cell Rep. 18, 1458-1472. https://doi.org/10.1016/j.celrep.2017.01.029
  54. Shi, L.Z., Wang, R., Huang, G., Vogel, P., Neale, G., Green, D.R., and Chi, H. (2011). HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J. Exp. Med. 208, 1367-1376. https://doi.org/10.1084/jem.20110278
  55. Simula, L., Pacella, I., Colamatteo, A., Procaccini, C., Cancila, V., Bordi, M., Tregnago, C., Corrado, M., Pigazzi, M., Barnaba, V., et al. (2018). Drp1 controls effective T cell immune-surveillance by regulating T cell migration, proliferation, and cMyc-dependent metabolic reprogramming. Cell Rep. 25, 3059-3073.e10. https://doi.org/10.1016/j.celrep.2018.11.018
  56. Spinelli, J.B. and Haigis, M.C. (2018). The multifaceted contributions of mitochondria to cellular metabolism. Nat. Cell Biol. 20, 745-754. https://doi.org/10.1038/s41556-018-0124-1
  57. Srinivasan, S., Guha, M., Kashina, A., and Avadhani, N.G. (2017). Mitochondrial dysfunction and mitochondrial dynamics-the cancer connection. Biochim. Biophys. Acta Bioenerg. 1858, 602-614. https://doi.org/10.1016/j.bbabio.2017.01.004
  58. Szabadkai, G., Bianchi, K., Varnai, P., De Stefani, D., Wieckowski, M.R., Cavagna, D., Nagy, A.I., Balla, T., and Rizzuto, R. (2006). Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J. Cell Biol. 175, 901-911. https://doi.org/10.1083/jcb.200608073
  59. Tan, Z., Xie, N., Cui, H., Moellering, D.R., Abraham, E., Thannickal, V.J., and Liu, G. (2015). Pyruvate dehydrogenase kinase 1 participates in macrophage polarization via regulating glucose metabolism. J. Immunol. 194, 6082-6089. https://doi.org/10.4049/jimmunol.1402469
  60. Theurey, P., Tubbs, E., Vial, G., Jacquemetton, J., Bendridi, N., Chauvin, M.A., Alam, M.R., Le Romancer, M., Vidal, H., and Rieusset, J. (2016). Mitochondria-associated endoplasmic reticulum membranes allow adaptation of mitochondrial metabolism to glucose availability in the liver. J. Mol. Cell Biol. 8, 129-143. https://doi.org/10.1093/jmcb/mjw004
  61. Thoudam, T., Chanda, D., Sinam, I.S., Kim, B.G., Kim, M.J., Oh, C.J., Lee, J.Y., Kim, M.J., Park, S.Y., Lee, S.Y., et al. (2022). Noncanonical PDK4 action alters mitochondrial dynamics to affect the cellular respiratory status. Proc. Natl. Acad. Sci. U. S. A. 119, e2120157119.
  62. Thoudam, T., Ha, C.M., Leem, J., Chanda, D., Park, J.S., Kim, H.J., Jeon, J.H., Choi, Y.K., Liangpunsakul, S., Huh, Y.H., et al. (2019). PDK4 augments ER-mitochondria contact to dampen skeletal muscle insulin signaling during obesity. Diabetes 68, 571-586. https://doi.org/10.2337/db18-0363
  63. Tilstra, J.S., Avery, L., Menk, A.V., Gordon, R.A., Smita, S., Kane, L.P., Chikina, M., Delgoffe, G.M., and Shlomchik, M.J. (2018). Kidney-infiltrating T cells in murine lupus nephritis are metabolically and functionally exhausted. J. Clin. Invest. 128, 4884-4897. https://doi.org/10.1172/JCI120859
  64. Tsokos, G.C. (2011). Systemic lupus erythematosus. N. Engl. J. Med. 365, 2110-2121. https://doi.org/10.1056/NEJMra1100359
  65. Tubbs, E., Theurey, P., Vial, G., Bendridi, N., Bravard, A., Chauvin, M.A., Ji-Cao, J., Zoulim, F., Bartosch, B., Ovize, M., et al. (2014). Mitochondria-associated endoplasmic reticulum membrane (MAM) integrity is required for insulin signaling and is implicated in hepatic insulin resistance. Diabetes 63, 3279-3294. https://doi.org/10.2337/db13-1751
  66. Yin, Y., Choi, S.C., Xu, Z., Perry, D.J., Seay, H., Croker, B.P., Sobel, E.S., Brusko, T.M., and Morel, L. (2015). Normalization of CD4+ T cell metabolism reverses lupus. Sci. Transl. Med. 7, 274ra218.
  67. Yin, Y., Choi, S.C., Xu, Z., Zeumer, L., Kanda, N., Croker, B.P., and Morel, L. (2016). Glucose oxidation is critical for CD4+ T cell activation in a mouse model of systemic lupus erythematosus. J. Immunol. 196, 80-90. https://doi.org/10.4049/jimmunol.1501537
  68. Yu, S.B. and Pekkurnaz, G. (2018). Mechanisms orchestrating mitochondrial dynamics for energy homeostasis. J. Mol. Biol. 430, 3922-3941. https://doi.org/10.1016/j.jmb.2018.07.027