DOI QR코드

DOI QR Code

On the Optimization of Side Scan Sonar Search Pattern for Underwater Cylindrical Objects

측면주사소나를 이용한 원통형 기뢰 최적탐색패턴 도출기법 연구

  • 이동훈 (국방과학연구소 해양기술연구원 ) ;
  • 이상일 (국방과학연구소 해양기술연구원 ) ;
  • 황근철 (국방과학연구소 해양기술연구원 ) ;
  • 윤원영 (부산대학교 )
  • Received : 2023.03.20
  • Accepted : 2023.06.12
  • Published : 2023.06.30

Abstract

Our study utilized a global stochastic optimization algorithm to determine the optimal path for detecting cylindrical bottom mines using side scan sonar technology. We modeled the minefield as a square area with varying environmental conditions and utilized a detection model to determine the probability of detecting a mine based on the distance and aspect angle between the sonar and the cylindrical bottom mine. The path plan for mine search was described with horizontal and vertical paths. We employed the particle swarm optimization algorithm among the global stochastic optimization algorithms. In the optimization algorithm, intervals between neighboring paths rather than paths are treated as decision variables to reduce the solution space and a stratified sampling-based Monte Carlo estimator is used as an estimator of average mine detection probability to minimize the error of estimator. We tried number of optimization procedures for various environment conditions and numbers of paths. From the result of our experiments, we could determine the number of paths necessary to satisfy given mine detection probability and we could acquire path patterns almost identical to a well-known geometrically meaningful pattern.

본 논문은 원통형 해저 기뢰를 탐지를 위한 최적의 측면주사소나의 경로 계획 도출을 위해 전역 확률적 최적화 알고리즘을 적용하였다. 이를 위하여 측면주사소나의 기뢰탐지 문제를 기뢰부설영역, 원통형 해저기뢰에 대한 측면주사소나의 해저원통형기뢰 탐지모델, 기뢰탐색을 위한 경로계획모델로 정식화하였다. 기뢰부설영역은 실제 상황을 구현하기 위해 이질적인 환경조건을 가진 직사각형 영역으로 모델링하였다. 측면주사소나와 원통형 해저 기뢰간의 거리와 측면각에 따른 측면주사소나 탐지모델을 적용하였다. 기뢰탐색을 위한 경로계획은 수평과 수직방향의 기동들의 집합으로 정의하였다. 연구를 위해 여러 가지 전역 확률적 최적화 알고리즘 중에서 입자군집최적화를 적용하였다. 적용된 최적화 알고리즘에는 최적경로계획 도출을 위한 결정변수로 경로 자체가 아닌 인접 소통 경로 사이의 간격으로 정의하여 탐색공간의 크기를 줄였고, 적합도의 추정치인 평균기뢰탐지확률은 층화추출 몬테칼로 추정치를 이용하여 오차를 최소화하도록 하였다. 기뢰원의 다양한 환경조건과 경로의 횟수의 변화에 따라 최적화 절차를 수행하였다. 결과적으로 원하는 기뢰탐지 확률을 만족하는 적절한 횟수를 도출하고 분석된 패턴은 잘 알려진 기하학적인 패턴과 거의 일치하는 패턴을 도출할 수 있었다.

Keywords

References

  1. Kye, J. E., Cho, J. I., Yoo, W. P., Choi, S. L., & Park, J. H. (2013). Trends and applications on multi-beam side scan sonar sensor technology. Electronics and Telecommunications Trends, 28(6), 167-179. https://doi.org/10.22648/ETRI.2013.J.280617
  2. Yoo, T. S., Park, S. J., Yoon, S. I., & Park, H. G. (2020). Analysis of the Effectiveness of Autonomous Unmanned Underwater Vehicle Mine Search Operation by Side Scan Sonar Characteristics. Journal of the Korea Institute of Information and Communication Engineering, 24(8), 1077-1085. https://doi.org/10.6109/JKIICE.2020.24.8.1077
  3. Hong, S., Yoon, S., Choi, B., & Oh, H. (2014). A study for Optimization Methodology of Unmanned System Architecture for Mine Countermeasure Based on Effectiveness. Journal of the Society of Korea Industrial and Systems Engineering, 37(2), 62-69. https://doi.org/10.11627/jkise.2014.37.2.62
  4. Hwang, A., Kim, M. H., & Lee, S. Y. (2012). A Study of Simulation Model for Effectiveness Analysis Simulation of Unmaned Underwater Vehicle for Mine Searching. Journal of the Korea Institute of Military Science and Technology, 15(4), 410-416. https://doi.org/10.9766/KIMST.2012.15.4.410
  5. Hwang, A., Kim, M. H., Lee, S. Y., Yoon, J. M., & Kim, C. K. (2011). A Study on Unmaned Underwater Vehicle Operational Performance Analysis for Mine Search Operation. Journal of the Korea Institute of Military Science and Technology, 14(5), 781-787. https://doi.org/10.9766/KIMST.2011.14.5.781
  6. Nguyen, B., & Hopkin, D. (2005). Concepts of operations for the side scan sonar Autonomous Underwater Vehicles developed at DRDC Atlantic. DRDC Atlantic TM, 213.
  7. Eberhart, R., & Kennedy, J. (1995a, October). A new optimizer using particle swarm theory. In MHS'95. Proceedings of the sixth international symposium on micro machine and human science (pp. 39-43). IEEE.
  8. Kennedy, J., & Eberhart, R. (1995, November). Particle swarm optimization. In Proceedings of ICNN'95-international conference on neural networks (Vol. 4, pp. 1942-1948). IEEE.
  9. Venter, G., & Sobieszczanski-Sobieski, J. (2002, September). Multidisciplinary optimization of a transport aircraft wing using particle swarm optimization. In 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization (p. 5644).
  10. Venter, G., & Sobieszczanski-Sobieski, J. (2003). Particle swarm optimization. AIAA journal, 41(8), 1583-1589. https://doi.org/10.2514/2.2111
  11. Cai, T., Pan, F., & Chen, J. (2004, June). Adaptive particle swarm optimization algorithm. In Fifth World Congress on Intelligent Control and Automation (IEEE Cat. No. 04EX788) (Vol. 3, pp. 2245-2247). IEEE.
  12. Gao, Y., & Duan, Y. (2007). An adaptive particle swarm optimization algorithm with new random inertia weight. In Advanced Intelligent Computing Theories and Applications. With Aspects of Contemporary Intelligent Computing Techniques: Third International Conference on Intelligent Computing, ICIC 2007, Qingdao, China, August 21-24, 2007. Proceedings 3 (pp. 342-350). Springer Berlin Heidelberg.
  13. Gao, Y., & Ren, Z. (2007, August). Adaptive particle swarm optimization algorithm with genetic mutation operation. In Third International Conference on Natural Computation (ICNC 2007) (Vol. 2, pp. 211-215). IEEE.