DOI QR코드

DOI QR Code

Multi-resolution Modeling Method for Semiconductor FAB Automated Material Handling System

반도체 FAB의 자동화 물류 시스템을 위한 다중해상도 모델링 방법

  • Received : 2023.02.27
  • Accepted : 2023.03.31
  • Published : 2023.06.30

Abstract

In this study, we propose a multi-resolution modeling method for the automated material handling system in semiconductor FABs. Discrete-event simulation is a crucial tool for experimenting and solving decision-making problems in the semiconductor industry. However, when both the production and logistics systems of semiconductor FABs are modeled together, simulation speed can become slow. To address this issue, we suggest a method that uses high-resolution and low-resolution models simultaneously to create a model of FAB's automated material handling system. By inheriting the logistics system characteristics extracted from the high-resolution model into the low-resolution model, we can obtain an FAB automated material handling system model with high simulation speed and accuracy. We verified the efficiency of our proposed method through simulation case studies using SMT2020 and SMAT2022 testbeds. Our proposed multi-resolution modeling method is expected to make an important technical contribution to improving the efficiency and accuracy of semiconductor FAB simulation.

본 연구에서는 반도체 FAB의 자동화 물류 시스템에 대한 다중해상도 모델링 방법을 제안한다. 이산사건 시뮬레이션은 반도체 산업 분야에서 중요한 도구로 활용되고 있지만, 반도체 생산 시스템과 물류 시스템을 함께 모델링하면 시뮬레이션 속도가 느려지는 문제점이 있다. 본 연구에서는 이러한 문제를 극복하기 위해, 고해상도 모델과 저해상도 모델을 동시에 사용하여 FAB의 자동화 물류 시스템에 대한 모델을 생성하는 방법을 제안한다. 고해상도 모델에서 추출된 FAB의 물류 시스템 특성을 저해상도 모델에 상속함으로써, 높은 시뮬레이션 속도와 높은 정합성을 갖는 FAB의 자동화 물류 시스템 모델을 획득할 수 있다. 본 연구에서는 SMT2020, SMAT2022 테스트배드를 활용한 시뮬레이션 사례 연구를 통해 제안된 방법의 효율성을 입증하였다. 이를 통해 제안된 다중해상도 모델링 방법이 반도체 FAB 시뮬레이션의 효율성과 정확성을 향상할 수 있는 중요한 기술적 기여할 것으로 기대된다.

Keywords

Acknowledgement

본 논문은 한국연구재단(NRF-2020R1A2C1004544), 정보통신기획평가원(IITP-2021000292), 그리고 산업통상자원부(RS-2022-00155650)의 지원을 받아 수행한 과제입니다.

References

  1. Bae, H. S. and Rhee, E. J. (2018), Information Acquisition of Simulation Objects by Resolution in Multiresolution Model based War Game, Journal of the Korea Institute of Information and Communication Engineering, Vol. 22, No. 1, pp. 147-154.
  2. Brain, M., Gould, R., Kaempf, U., and Wehrung, B. (1999), Emerging needs for continuous flow FOUP transport, Twenty Fourth IEEE/CPMT International Electronics Manufacturing Technology Symposium (Cat. No.99CH36330), Austin, TX, USA, pp. 76-82.
  3. Davis, P. K. and Bigelow, J. H. (1998), Experiments in multiresolution modeling (MRM), RAND Coproration Report No. MR-1004-DARPA. The RAND Corporation, Santa Monica.
  4. Fowler, J. W., Monch, L., and Ponsignon, T. (2015), Discrete-Event Simulation for Semiconductor Wafer Fabrication Facilities: "a Tutorial", International Journal of Industrial Engineering: Theory, Applications and Practice, Vol. 22, No. 5, pp. 661-682.
  5. Monch, L., Fowler, J. W., and Mason, S. J. (2013), Production Planning and Control for Semiconductor Wafer Fabrication Facilities: Modeling, Analysis, and Systems, Springer New York, New York.
  6. Gaxiola, G., Pabst, D., Christensen, E., and Wizelman, D. (2013), Methodology to evaluate the impact of AMHS design characteristics on operational fab performance, 2013 Winter Simulations Conference (WSC), Washington, DC, USA, pp. 3806-3817.
  7. Kim, J. M., Kim, O. H., Hong, S. B., and Lim, D. (2019), A Deep Learning-Based Model for Predicting Traffic Congestion in Semiconductor Fabrication, Journal of Industrial Technology, Vol. 39, No. 1, pp. 27-31. https://doi.org/10.22805/JIT.2019.39.1.027
  8. Kong, S. H. (2007), Two-step simulation method for automatic material handling system of semiconductor fab, Robotics and Computer-Integrated Manufacturing, Vol. 23, No. 4, pp. 409-420. https://doi.org/10.1016/j.rcim.2006.05.004
  9. Kopp, D., Hassoun, M., Kalir, A., and Monch, L. (2020), SMT2020-A Semiconductor Manufacturing Testbed, IEEE Transactions on Semiconductor Manufacturing, Vol. 33, No. 4, pp. 522-531. https://doi.org/10.1109/TSM.2020.3001933
  10. Lee, K. W., Song, S. Y., Chang, D. S., and Park, S. C. (2022), A New AMHS Testbed for Semiconductor Manufacturing, 2022 Winter Simulation Conference (WSC), Singapore, pp. 3318-3325.
  11. Moon, H. and Kim, S. (2018), Studies on the Operating Requirements of Multi-Resolution Modeling in Training War-Game Model and on the Solutions for Major Issues of Multi-Resolution Interoperation between Combat21 Model and TMPS, Journal of the KIMST, Vol. 21, No. 6, pp. 865-876.
  12. Moon, K., An, Y., Jeong, U., and Ryoo, C. (2019), Components Design for Guided Weapon System according to Resolution based on Base System Model, Journal of Korea Simulation Society, Vol. 28, No. 3, pp. 11-23.
  13. Seo, J. H., and Kim, K. H. (2018), Automating Model Building Processes for Simulation of Complex Manufacturing and Logistics Systems, Journal of Korea Simulation Society, Vol. 27, No. 2, pp. 125-137.
  14. Tung, J., Sheen, T., Kao, M., and Chen, C. (2013), Optimization of AMHS design for a semiconductor foundry fab by using simulation modeling, 2013 Winter Simulations Conference (WSC), Washington, DC, USA, pp. 3829-3839.
  15. Yang, T., and Peters, B. (1998), A Spine Layout Design Method for Semiconductor Fabrication Facilities Containing Automated Material Handling Systems, International Journal of Operations & Production Management, Vol. 17, No. 6, pp. 490-501. https://doi.org/10.1108/01443579710167212