DOI QR코드

DOI QR Code

Osteoblastogenesis and osteolysis in the Zucker Diabetic Sprague Dawley rat humerus head

  • Gcwalisile Frances Dlamini (School of Anatomical Sciences, Faculty of Health Sciences, University of Witwatersrand) ;
  • Robert Ndou (Department of Human Anatomy and Histology, School of Medicine, Sefako Makgatho Health Sciences University)
  • Received : 2023.06.12
  • Accepted : 2023.07.11
  • Published : 2023.12.31

Abstract

The endocrinology of type 2 diabetes (T2D) and its predisposing factors have been studied extensively while its skeletal effects have received negligible research despite this being a global disease. The cellular and molecular association between proximal humeral fractures and T2D has not been fully elucidated. We aimed to study bone cell quantities and immunolabel osteogenic and antiosteogenic cytokines. The study used 12-week-old rats (23 males) consisting of 8 Sprague Dawley (SD) and 15 Zucker Diabetic Sprague Dawley (ZDSD). Weekly mass measurements were taken while fasting blood glucose levels were recorded every 2 weeks with oral glucose tolerance tests conducted once every 4 weeks. Upon termination at the age of 28 weeks, humeri were fixed in 10% buffered formalin, prior to decalcification in ethylenediaminetetraacetic acid. The bone samples were then processed in ascending grades of alcohol using an automatic processor before embedding in paraffin wax. Sections were cut at 5 ㎛ thickness in a series for Haematoxylin and Eosin stain, and immunohistochemistry was performed with the anti-tartrate-resistant acid phosphatase (TRAP), anti-alkaline phosphatase (ALP), anti-bone morphogenetic protein 3 (BMP3), anti-transforming growth factor beta 1 (TGFβ1), anti-aged glycation end product (AGE) antibodies in the sequence. ZDSD rats had more adipocytes, BMP3 and AGEs expression with higher numbers of TRAP positive osteocytes and fewer ALP cells although no differences were found in TGFβ1 immunopositivity. We also found that T2D increases the number of AGEs immuno-positive cells, as well as its extracellular expression, thus providing a conducive environment for the interaction of the osteogenic cytokine and its antagonist to suppress osteoblastogenesis. ZDSD groups had higher adipocyte numbers therefore increased marrow adiposity in T2D.

Keywords

Acknowledgement

We are grateful to Ms Hasiena Ali for technical assistance and to the staff of the CAS at the University of the Witwatersrand for assistance with animal handling and welfare. The views and opinions expressed are those of the authors and do not necessarily represent the official views of the SA MRC.

References

  1. Oh YS. Mechanistic insights into pancreatic beta-cell mass regulation by glucose and free fatty acids. Anat Cell Biol 2015;48:16-24. 
  2. Del Prato S. Role of glucotoxicity and lipotoxicity in the pathophysiology of type 2 diabetes mellitus and emerging treatment strategies. Diabet Med 2009;26:1185-92.
  3. Devlin MJ, Van Vliet M, Motyl K, Karim L, Brooks DJ, Louis L, Conlon C, Rosen CJ, Bouxsein ML. Early-onset type 2 diabetes impairs skeletal acquisition in the male TALLYHO/JngJ mouse. Endocrinology 2014;155:3806-16. 
  4. Picke AK, Campbell G, Napoli N, Hofbauer LC, Rauner M. Update on the impact of type 2 diabetes mellitus on bone metabolism and material properties. Endocr Connect 2019;8:R55-70. 
  5. Chu SP, Kelsey JL, Keegan TH, Sternfeld B, Prill M, Quesenberry CP, Sidney S. Risk factors for proximal humerus fracture. Am J Epidemiol 2004;160:360-7.
  6. Iglesias-Rodriguez S, Dominguez-Prado DM, Garcia-Reza A, Fernandez-Fernandez D, Perez-Alfonso E, Garcia-Pineiro J, Castro-Menendez M. Epidemiology of proximal humerus fractures. J Orthop Surg Res 2021;16:402.
  7. Chen Y, Lin C, Huang X, Lin F, Luo X. Comparison of treatment results between surgical and conservative treatment of distal radius fractures in adults: a meta-analysis of randomized controlled trials. Acta Orthop Traumatol Turc 2021;55:118-26. 
  8. Ahmad T, Ohlsson C, Saaf M, Ostenson CG, Kreicbergs A. Skeletal changes in type-2 diabetic Goto-Kakizaki rats. J Endocrinol 2003;178:111-6.
  9. Martinez-Huedo MA, Jimenez-Garcia R, Mora-Zamorano E, Hernandez-Barrera V, Villanueva-Martinez M, Lopez-deAndres A. Trends in incidence of proximal humerus fractures, surgical procedures and outcomes among elderly hospitalized patients with and without type 2 diabetes in Spain (2001-2013). BMC Musculoskelet Disord 2017;18:522. 
  10. Schousboe JT, Morin SN, Kline GA, Lix LM, Leslie WD. Differential risk of fracture attributable to type 2 diabetes mellitus according to skeletal site. Bone 2022;154:116220. 
  11. Sassi F, Buondonno I, Luppi C, Spertino E, Stratta E, Di Stefano M, Ravazzoli M, Isaia G, Trento M, Passera P, Porta M, Isaia GC, D'Amelio P. Type 2 diabetes affects bone cells precursors and bone turnover. BMC Endocr Disord 2018;18:55.
  12. Seibel MJ. Biochemical markers of bone turnover: part I: biochemistry and variability. Clin Biochem Rev 2005;26:97-122. 
  13. Feng X, McDonald JM. Disorders of bone remodeling. Annu Rev Pathol 2011;6:121-45. 
  14. Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, Hodsman AB, Eriksen EF, Ish-Shalom S, Genant HK, Wang O, Mitlak BH. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 2001;344:1434-41. 
  15. Dole NS, Mazur CM, Acevedo C, Lopez JP, Monteiro DA, Fowler TW, Gludovatz B, Walsh F, Regan JN, Messina S, Evans DS, Lang TF, Zhang B, Ritchie RO, Mohammad KS, Alliston T. Osteocyte-intrinsic TGF-β signaling regulates bone quality through perilacunar/canalicular remodeling. Cell Rep 2017;21:2585-96. 
  16. Qing H, Ardeshirpour L, Pajevic PD, Dusevich V, Jahn K, Kato S, Wysolmerski J, Bonewald LF. Demonstration of osteocytic perilacunar/canalicular remodeling in mice during lactation. J Bone Miner Res 2012;27:1018-29. 
  17. Bellido T. Osteocyte-driven bone remodeling. Calcif Tissue Int 2014;94:25-34.
  18. Burger EH, Klein-Nulend J. Mechanotransduction in bone--role of the lacuno-canalicular network. FASEB J 1999;13 Suppl:S101-12.
  19. Bhattarai T, Bhattacharya K, Chaudhuri P, Sengupta P. Correlation of common biochemical markers for bone turnover, serum calcium, and alkaline phosphatase in post-menopausal women. Malays J Med Sci 2014;21:58-61. 
  20. Blakytny R, Spraul M, Jude EB. Review: the diabetic bone: a cellular and molecular perspective. Int J Low Extrem Wounds 2011;10:16-32. 
  21. Hamann C, Goettsch C, Mettelsiefen J, Henkenjohann V, Rauner M, Hempel U, Bernhardt R, Fratzl-Zelman N, Roschger P, Rammelt S, Gunther KP, Hofbauer LC. Delayed bone regeneration and low bone mass in a rat model of insulin-resistant type 2 diabetes mellitus is due to impaired osteoblast function. Am J Physiol Endocrinol Metab 2011;301:E1220-8.
  22. Ehnert S, Baur J, Schmitt A, Neumaier M, Lucke M, Dooley S, Vester H, Wildemann B, Stockle U, Nussler AK. TGF-β1 as possible link between loss of bone mineral density and chronic inflammation. PLoS One 2010;5:e14073. 
  23. Wu M, Chen G, Li YP. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res 2016;4:16009.
  24. Janssens K, ten Dijke P, Janssens S, Van Hul W. Transforming growth factor-beta1 to the bone. Endocr Rev 2005;26:743-74. 
  25. Jian H, Shen X, Liu I, Semenov M, He X, Wang XF. Smad3-dependent nuclear translocation of beta-catenin is required for TGF-beta1-induced proliferation of bone marrow-derived adult human mesenchymal stem cells. Genes Dev 2006;20:666-74.
  26. Creecy A, Uppuganti S, Merkel AR, O'Neal D, Makowski AJ, Granke M, Voziyan P, Nyman JS. Changes in the fracture resistance of bone with the progression of type 2 diabetes in the ZDSD rat. Calcif Tissue Int 2016;99:289-301. 
  27. Plotkin LI, Essex AL, Davis HM. RAGE signaling in skeletal biology. Curr Osteoporos Rep 2019;17:16-25. 
  28. Sanguineti R, Puddu A, Mach F, Montecucco F, Viviani GL. Advanced glycation end products play adverse proinflammatory activities in osteoporosis. Mediators Inflamm 2014;2014:975872.
  29. Singh L, Tyagi S, Myers D, Duque G. Good, bad, or ugly: the biological roles of bone marrow fat. Curr Osteoporos Rep 2018;16:130-7. 
  30. Yamamoto M, Sugimoto T. Advanced glycation end products, diabetes, and bone strength. Curr Osteoporos Rep 2016;14:320-6. 
  31. Ferland-McCollough D, Maselli D, Spinetti G, Sambataro M, Sullivan N, Blom A, Madeddu P. MCP-1 feedback loop between adipocytes and mesenchymal stromal cells causes fat accumulation and contributes to hematopoietic stem cell rarefaction in the bone marrow of patients with diabetes. Diabetes 2018;67:1380-94. 
  32. Gillet C, Dalla Valle A, Gaspard N, Spruyt D, Vertongen P, Lechanteur J, Rigutto S, Dragan ER, Heuschling A, Gangji V, Rasschaert J. Osteonecrosis of the femoral head: lipotoxicity exacerbation in MSC and modifications of the bone marrow fluid. Endocrinology 2017;158:490-502. 
  33. Yang Y, Zhang N, Lan F, Van Crombruggen K, Fang L, Hu G, Hong S, Bachert C. Transforming growth factor-beta 1 pathways in inflammatory airway diseases. Allergy 2014;69:699-707. 
  34. Nakano Y, Toyosawa S, Takano Y. Eccentric localization of osteocytes expressing enzymatic activities, protein, and mRNA signals for type 5 tartrate-resistant acid phosphatase (TRAP). J Histochem Cytochem 2004;52:1475-82.
  35. Hawthorne AC, Xavier SP, Okamoto R, Salvador SL, Antunes AA, Salata LA. Immunohistochemical, tomographic, and histological study on onlay bone graft remodeling. Part III: allografts. Clin Oral Implants Res 2013;24:1164-72.
  36. Miao D, Scutt A. Histochemical localization of alkaline phosphatase activity in decalcified bone and cartilage. J Histochem Cytochem 2002;50:333-40. 
  37. Kim TY, Schafer AL. Diabetes and bone marrow adiposity. Curr Osteoporos Rep 2016;14:337-44.
  38. Fairfield H, Falank C, Harris E, Demambro V, McDonald M, Pettitt JA, Mohanty ST, Croucher P, Kramer I, Kneissel M, Rosen CJ, Reagan MR. The skeletal cell-derived molecule sclerostin drives bone marrow adipogenesis. J Cell Physiol 2018;233:1156-67. 
  39. Piccinin MA, Khan ZA. Pathophysiological role of enhanced bone marrow adipogenesis in diabetic complications. Adipocyte 2014;3:263-72.
  40. Rharass T, Lucas S. Mechanisms in endocrinology: bone marrow adiposity and bone, a bad romance? Eur J Endocrinol 2018;179:R165-82.
  41. Kaya S, Basta-Pljakic J, Seref-Ferlengez Z, Majeska RJ, Cardoso L, Bromage TG, Zhang Q, Flach CR, Mendelsohn R, Yakar S, Fritton SP, Schaffler MB. Lactation-induced changes in the volume of osteocyte lacunar-canalicular space alter mechanical properties in cortical bone tissue. J Bone Miner Res 2017;32:688-97. 
  42. Cepelak I, Cvoriscec D. Biochemical markers of bone remodeling - review. Biochem Med 2009;19:17-35. 
  43. Florencio-Silva R, Sasso GR, Sasso-Cerri E, Simoes MJ, Cerri PS. Biology of bone tissue: structure, function, and factors that influence bone cells. Biomed Res Int 2015;2015:421746. 
  44. Goldin A, Beckman JA, Schmidt AM, Creager MA. Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation 2006;114:597-605. 
  45. Singh VP, Bali A, Singh N, Jaggi AS. Advanced glycation end products and diabetic complications. Korean J Physiol Pharmacol 2014;18:1-14. 
  46. Kislinger T, Fu C, Huber B, Qu W, Taguchi A, Du Yan S, Hofmann M, Yan SF, Pischetsrieder M, Stern D, Schmidt AM. N(epsilon)-(carboxymethyl)lysine adducts of proteins are ligands for receptor for advanced glycation end products that activate cell signaling pathways and modulate gene expression. J Biol Chem 1999;274:31740-9. 
  47. Gazzerro E, Canalis E. Bone morphogenetic proteins and their antagonists. Rev Endocr Metab Disord 2006;7:51-65.