DOI QR코드

DOI QR Code

The correlation of Septin4 gene expression with sperm quality, DNA damage, and oxidative stress level in infertile patients

  • Rahil Jannatifar (Department of Reproductive Biology, Academic Center for Education Culture and Research (ACECR)) ;
  • Hamid Piroozmanesh (Department of Reproductive Biology, Academic Center for Education Culture and Research (ACECR)) ;
  • Fahimeh Naghi Jalalabadi (Department of Biology, Faculty of Science, Arak University) ;
  • Hamid Reza Momeni (Department of Biology, Faculty of Science, Arak University)
  • Received : 2022.11.08
  • Accepted : 2023.08.25
  • Published : 2023.12.31

Abstract

Septin4 belong to a family of polymerizing GTP-binding proteins that are required for many cellular functions, such as membrane compartmentalization, vesicular trafficking, mitosis, and cytoskeletal remodeling. Since, Septin4 is expressed specifically in the testis, we aimed to determine the association between Septin4 gene expression with sperm quality, DNA damage, and stress oxidative level in infertile patients. The present study included 60 semen samples that grouped into three groups: normozoospermia (n=20), asthenozoospermia (n=20), astheno-teratozoospermia (n=20). Initially, semen parameters were analyzed by using the World Health Organization protocol. The mRNA expression of Septin4 in sperm was examined using reverse transcription-polymerase chain reaction. Oxidative stress markers, i.e., total antioxidant capacity, superoxide dismutase, catalase, glutathione peroxidase, and malondialdehyde, were determined by ELISA kit. The current study showed a statistically significant highly positive correlation in Septin4 gene expression with sperm motility, normal morphology, viability, capacity, and sperm mitochondrial membrane potential (MMP). However, it showed significant negative correlation with sperm DNA fragmentation. Septin4 had a significant correlation with stress oxidative factor and antioxidant enzyme levels. In conclusion, Septin4 gene expression provides clinical useful information for the diagnosis of male infertility. It might be a marker for discrimination between fertile and infertile patients. The current study showed a statistically significant highly positive correlation in Septin4 gene expression with sperm motility, normal morphology, viability, capacity, and sperm MMP. However, it shows significant negative correlation with sperm DNA fragmentation. Septin4 had a significant correlation with stress oxidative factor and antioxidant enzyme levels.

Keywords

Acknowledgement

We appreciate the ACECR center for infertility treatment (Qom branch) in this study.

References

  1. Ilacqua A, Izzo G, Emerenziani GP, Baldari C, Aversa A. Lifestyle and fertility: the influence of stress and quality of life on male fertility. Reprod Biol Endocrinol 2018;16:115. 
  2. Anway MD, Cupp AS, Uzumcu M, Skinner MK. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 2005;308:1466-9. Erratum in: Science 2010;328:690. 
  3. Khatun A, Rahman MS, Pang MG. Clinical assessment of the male fertility. Obstet Gynecol Sci 2018;61:179-91. https://doi.org/10.5468/ogs.2018.61.2.179
  4. Zorn B, Golob B, Ihan A, Kopitar A, Kolbezen M. Apoptotic sperm biomarkers and their correlation with conventional sperm parameters and male fertility potential. J Assist Reprod Genet 2012;29:357-64.  https://doi.org/10.1007/s10815-012-9718-x
  5. Lin YH, Kuo YC, Chiang HS, Kuo PL. The role of the septin family in spermiogenesis. Spermatogenesis 2011;1:298-302.  https://doi.org/10.4161/spmg.1.4.18326
  6. Rafaee A, Mohseni Meybodi A, Yaghmaei P, Hosseini SH, Sabbaghian M. Single-nucleotide polymorphism c.474G>A in the SEPT12 gene is a predisposing factor in male infertility. Mol Reprod Dev 2020;87:251-9.  https://doi.org/10.1002/mrd.23310
  7. Hall PA, Jung K, Hillan KJ, Russell SE. Expression profiling the human septin gene family. J Pathol 2005;206:269-78.  https://doi.org/10.1002/path.1789
  8. Zhang L, He Y, Lei K, Fang Z, Li Q, Su J, Nie Z, Xu Y, Jin L. Gene expression profiling of early Parkinson's disease patient reveals redox homeostasis. Neurosci Lett 2021;753:135893.
  9. Wang YY, Lai TH, Chen MF, Lee HL, Kuo PL, Lin YH. SEPT14 mutations and teratozoospermia: genetic effects on sperm head morphology and DNA integrity. J Clin Med 2019;8:1297. 
  10. Akhmetova KA, Chesnokov IN, Fedorova SA. [Functional characterization of septin complexes]. Mol Biol (Mosk) 2018;52:155-71. Russian.  https://doi.org/10.1134/S0026893317050028
  11. Abbey M, Gaestel M, Menon MB. Septins: active GTPases or just GTP-binding proteins? Cytoskeleton (Hoboken) 2019;76:55-62.  https://doi.org/10.1002/cm.21451
  12. Nagata K, Asano T, Nozawa Y, Inagaki M. Biochemical and cell biological analyses of a mammalian septin complex, Sept7/9b/11. J Biol Chem 2004;279:55895-904.  https://doi.org/10.1074/jbc.M406153200
  13. Shen YR, Wang HY, Kuo YC, Shih SC, Hsu CH, Chen YR, Wu SR, Wang CY, Kuo PL. SEPT12 phosphorylation results in loss of the septin ring/sperm annulus, defective sperm motility and poor male fertility. PLoS Genet 2017;13:e1006631. 
  14. Vickram AS, Anbarasu K, Jeyanthi P, Gulothungan G, Nanmaran R, Thanigaivel S, Sridharan TB, Rohini K. Identification and structure prediction of human Septin-4 as a biomarker for diagnosis of asthenozoospermic infertile patients-critical finding toward personalized medicine. Front Med (Lausanne) 2021;8:723019. 
  15. Tu C, Wang W, Hu T, Lu G, Lin G, Tan YQ. Genetic underpinnings of asthenozoospermia. Best Pract Res Clin Endocrinol Metab 2020;34:101472. 
  16. Kissel H, Georgescu MM, Larisch S, Manova K, Hunnicutt GR, Steller H. The Sept4 septin locus is required for sperm terminal differentiation in mice. Dev Cell 2005;8:353-64.  https://doi.org/10.1016/j.devcel.2005.01.021
  17. Ihara M, Kinoshita A, Yamada S, Tanaka H, Tanigaki A, Kitano A, Goto M, Okubo K, Nishiyama H, Ogawa O, Takahashi C, Itohara S, Nishimune Y, Noda M, Kinoshita M. Cortical organization by the septin cytoskeleton is essential for structural and mechanical integrity of mammalian spermatozoa. Dev Cell 2005;8:343-52.  https://doi.org/10.1016/j.devcel.2004.12.005
  18. Kwitny S, Klaus AV, Hunnicutt GR. The annulus of the mouse sperm tail is required to establish a membrane diffusion barrier that is engaged during the late steps of spermiogenesis. Biol Reprod 2010;82:669-78.  https://doi.org/10.1095/biolreprod.109.079566
  19. Vahabi Barzi N, Kakavand K, Sodeifi N, Ghezelayagh Z, Sabbaghian M. Expression and localization of Septin 14 gene and protein in infertile men testis. Reprod Biol 2020;20:164-8.  https://doi.org/10.1016/j.repbio.2020.03.007
  20. Singh S, Sharma S, Jain M, Chauhan R. Importance of papanicolaou staining for sperm morphologic analysis: comparison with an automated sperm quality analyzer. Am J Clin Pathol 2011;136:247-51.  https://doi.org/10.1309/AJCPCLCSPP24QPHR
  21. Dooley MP. The use of eosin B to assess the viability and developmental potential of rat embryos [PhD dissertation]. Ames: Iowa State University; 1988. 
  22. Agnihotri SK, Agrawal AK, Hakim BA, Vishwakarma AL, Narender T, Sachan R, Sachdev M. Mitochondrial membrane potential (MMP) regulates sperm motility. In Vitro Cell Dev Biol Anim 2016;52:953-60.  https://doi.org/10.1007/s11626-016-0061-x
  23. Ribas-Maynou J, Garcia-Peiro A, Fernandez-Encinas A, Abad C, Amengual MJ, Prada E, Navarro J, Benet J. Comprehensive analysis of sperm DNA fragmentation by five different assays: TUNEL assay, SCSA, SCD test and alkaline and neutral Comet assay. Andrology 2013;1:715-22.  https://doi.org/10.1111/j.2047-2927.2013.00111.x
  24. Lindemann CB, Lesich KA. Functional anatomy of the mammalian sperm flagellum. Cytoskeleton (Hoboken) 2016;73:652-69.  https://doi.org/10.1002/cm.21338
  25. Moretti E, Geminiani M, Terzuoli G, Renieri T, Pascarelli N, Collodel G. Two cases of sperm immotility: a mosaic of flagellar alterations related to dysplasia of the fibrous sheath and abnormalities of head-neck attachment. Fertil Steril 2011;95:1787.e19-23.  https://doi.org/10.1016/j.fertnstert.2011.01.025
  26. Gilpin W, Bull MS, Prakash M. The multiscale physics of cilia and flagella. Nat Rev Phys 2020;2:74-88.  https://doi.org/10.1038/s42254-019-0129-0
  27. Sugino Y, Ichioka K, Soda T, Ihara M, Kinoshita M, Ogawa O, Nishiyama H. Septins as diagnostic markers for a subset of human asthenozoospermia. J Urol 2008;180:2706-9. Erratum in: J Urol 2009;181:924.  https://doi.org/10.1016/j.juro.2008.08.005
  28. Lehti MS, Sironen A. Formation and function of sperm tail structures in association with sperm motility defects. Biol Reprod 2017;97:522-36.  https://doi.org/10.1093/biolre/iox096
  29. De Amicis F, Perrotta I, Santoro M, Guido C, Morelli C, Cesario MG, Bruno R, Aquila S. Human sperm anatomy: different expression and localization of phosphatidylinositol 3-kinase in normal and varicocele human spermatozoa. Ultrastruct Pathol 2013;37:176-82.  https://doi.org/10.3109/01913123.2013.763881
  30. La Spina FA, Stival C, Krapf D, Buffone MG. Molecular and cellular aspects of mammalian sperm acrosomal exocytosis. In: Constantinescu G, Schatten H, editors. Animal Models and Human Reproduction. John Wiley & Sons; 2017. p.409-26. 
  31. Devlin DJ, Agrawal Zaneveld S, Nozawa K, Han X, Moye AR, Liang Q, Harnish JM, Matzuk MM, Chen R. Knockout of mouse receptor accessory protein 6 leads to sperm function and morphology defects. Biol Reprod 2020;102:1234-47.  https://doi.org/10.1093/biolre/ioaa024
  32. Yeh CH, Kuo PL, Wang YY, Wu YY, Chen MF, Lin DY, Lai TH, Chiang HS, Lin YH. SEPT12/SPAG4/LAMINB1 complexes are required for maintaining the integrity of the nuclear envelope in postmeiotic male germ cells. PLoS One 2015;10:e0120722. 
  33. Lin YH, Chou CK, Hung YC, Yu IS, Pan HA, Lin SW, Kuo PL. SEPT12 deficiency causes sperm nucleus damage and developmental arrest of preimplantation embryos. Fertil Steril 2011;95:363-5.  https://doi.org/10.1016/j.fertnstert.2010.07.1064
  34. Kinoshita M, Takeda S. Connecting the dots between septins and the DNA damage checkpoint. Cell 2007;130:777-9.  https://doi.org/10.1016/j.cell.2007.08.022
  35. Tafuri S, Ciani F, Iorio EL, Esposito L, Cocchia N. Reactive Oxygen Species (ROS) and male fertility. In: Wu B, editor. New discoveries in embryology. InTech; 2015. p.19-33. 
  36. Walczak-Jedrzejowska R, Wolski JK, Slowikowska-Hilczer J. The role of oxidative stress and antioxidants in male fertility. Cent European J Urol 2013;66:60-7.  https://doi.org/10.5173/ceju.2013.01.art19
  37. Daryoush F, Ardeshir M, Omid R, Ayoob R, Malekzadeh KM. Reactive oxygenated species (ROS) in male fertility; source, interaction mechanism and antioxidant therapy. Res J Pharm Technol 2018;11:791-6.  https://doi.org/10.5958/0974-360X.2018.00150.6
  38. Agarwal A, Varghese AC, Sharma RK. Markers of oxidative stress and sperm chromatin integrity. Methods Mol Biol 2009;590:377-402.  https://doi.org/10.1007/978-1-60327-378-7_24
  39. Aitken RJ, Warner P, Best FS, Templeton AA, Djahanbakhch O, Mortimer D, Lees MM. The predictability of subnormal penetrating capacity of sperm in cases of unexplained infertility. Int J Androl 1983;6:212-20.  https://doi.org/10.1111/j.1365-2605.1983.tb00534.x
  40. Hsieh YY, Chang CC, Lin CS. Seminal malondialdehyde concentration but not glutathione peroxidase activity is negatively correlated with seminal concentration and motility. Int J Biol Sci 2006;2:23-9.  https://doi.org/10.7150/ijbs.2.23
  41. Kim YW, Byzova TV. Oxidative stress in angiogenesis and vascular disease. Blood 2014;123:625-31.  https://doi.org/10.1182/blood-2013-09-512749
  42. Zhang N, Zhang Y, Zhao S, Sun Y. Septin4 as a novel binding partner of PARP1 contributes to oxidative stress induced human umbilical vein endothelial cells injure. Biochem Biophys Res Commun 2018;496:621-7.  https://doi.org/10.1016/j.bbrc.2018.01.105
  43. Zhang N, Zhang Y, Wu B, You S, Sun Y. Role of WW domain E3 ubiquitin protein ligase 2 in modulating ubiquitination and Degradation of Septin4 in oxidative stress endothelial injury. Redox Biol 2020;30:101419.