DOI QR코드

DOI QR Code

Innervation of pineal gland by the nervus conarii: a review of this almost forgotten structure

  • Kion Gregory (Tulane University School of Medicine) ;
  • Tyler Warner (Department of Anatomical Sciences, St. George's University) ;
  • Juan J. Cardona (Department of Neurosurgery, Tulane University School of Medicine) ;
  • Arada Chaiyamoon (Department of Anatomy, Faculty of Medicine, Khon Kaen University) ;
  • Joe Iwanaga (Department of Neurosurgery, Tulane University School of Medicine) ;
  • Aaron S. Dumont (Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine) ;
  • R. Shane Tubbs (Department of Anatomical Sciences, St. George's University)
  • 투고 : 2023.02.03
  • 심사 : 2023.06.16
  • 발행 : 2023.09.30

초록

The nervus conarii provides sympathetic nerve innervation to the pineal gland, which is thought to be the primary type of stimulus to this gland. This underreported nerve has been mostly studied in animals. One function of the nervus conarii may be to activate pinealocytes to produce melatonin. Others have also found substance P and calcitonin gene-related peptide from the nervus conarii ending in the pineal gland. The following paper reviews the extant medical literature on the nervus conarii including its anatomy and potential function.

키워드

참고문헌

  1. Zaccagna F, Brown FS, Allinson KSJ, Devadass A, Kapadia A, Massoud TF, Matys T. In and around the pineal gland: a neuroimaging review. Clin Radiol 2022;77:e107-19. 
  2. Moller M, Baeres FM. The anatomy and innervation of the mammalian pineal gland. Cell Tissue Res 2002;309:139-50. 
  3. Tripathy K, Simakurthy S, Jan A. Ciliospinal reflex. StatPearls Publishing; 2022. 
  4. Haines DE, Mihailoff GA. The diencephalon. In: Haines DE, Mihailoff GA, editors. Fundamental neuroscience for basic and clinical applications. 5th ed. Elsevier; 2018. p.212-24. 
  5. Rodriguez-Perez AP. [Contribution to the knowledge of the innervation of the endocrine glands. IV. First experimental results about the innervation of the epiphysis] Trab Inst Cajal Invest Biol 1962;54:225-36. Spanish. 
  6. Kappers JA, Schade JP. Structure and function of the epiphysis cerebri. Elsevier; 1965. 
  7. Mollgaard K, Moller M. On the innervation of the human fetal pineal gland. Brain Res 1973;52:428-32. 
  8. Kappers JA. The development, topographical relations and innervation of the epiphysis cerebri in the albino rat. Z Zellforsch Mikrosk Anat 1960;52:163-215. 
  9. Bowers CW, Dahm LM, Zigmond RE. The number and distribution of sympathetic neurons that innervate the rat pineal gland. Neuroscience 1984;13:87-96. 
  10. Kenny GC. The "nervus conarii" of the monkey. (An experimental study). J Neuropathol Exp Neurol 1961;20:563-70. 
  11. Pastori G. [A hitherto undescribed sympathetic ganglion and its relations to the conari nerve and the great vein of Galen] Neurol Psychiat 1930;123:81-90. German. 
  12. Macchi MM, Bruce JN. Human pineal physiology and functional significance of melatonin. Front Neuroendocrinol 2004;25:177-95. 
  13. Dafny N. Two photic pathways contribute to pineal evoked responses. Life Sci 1980;26:737-42. 
  14. Quay WB. Effects of cutting nervi conarii and tentorium cerebelli on pineal composition and activity shifting following reversal of photoperiod. Physiol Behav 1971;6:681-8. 
  15. Machado ABM. Electron microscopy of developing sympathetic fibres in the rat pineal body the formation of granular vesicles. Prog Brain Res 1971;34:171-85. 
  16. Wetterberg L. Clinical importance of melatonin. Prog Brain Res 1979;52:539-47. 
  17. Shafii M, Shafii SL. Biological rhythms, mood disorders, light therapy, and the pineal gland. American Psychiatric Press; 1990. 
  18. Lumsden SC, Clarkson AN, Cakmak YO. Neuromodulation of the pineal gland via electrical stimulation of its sympathetic innervation pathway. Front Neurosci 2020;14:264. 
  19. Klein DC, Coon SL, Roseboom PH, Weller JL, Bernard M, Gastel JA, Zatz M, Iuvone PM, Rodriguez IR, Begay V, Falcon J, Cahill GM, Cassone VM, Baler R. The melatonin rhythm-generating enzyme: molecular regulation of serotonin N-acetyltransferase in the pineal gland. Recent Prog Horm Res 1997;52:307-57; discussion 357-8. 
  20. Bertler A, Falck B, Owman C. Studies on 5-hydroxytryptamine stores in pineal gland of rat. Acta Physiol Scand Suppl 1964;220(Suppl 239):1-18. 
  21. Bulc M, Lewczuk B. Innervation of the pineal gland in the Arctic fox (Vulpes lagopus) by nerve fibres immunoreactive to substance P and calcitonin gene-related peptide. Folia Morphol (Warsz) 2019;78:695-702.