DOI QR코드

DOI QR Code

The Removal of Impurities from Domestic Graphite Concentrate by H2SO4 Solution and NaOH Solution Leaching

황산용액과 수산화나트륨용액의 침출에 의한 국내산 흑연 정광으로부터 불순물 제거

  • Junseop Lee (Department of Energy and Resources Engineering, Korea Maritime and Ocean University) ;
  • Kyoungkeun Yoo (Department of Energy and Resources Engineering, Korea Maritime and Ocean University) ;
  • Hyunkyoo Park (Stockpile Management Department, Korea Mine Rehabilitation and Mineral Resources Corporation (KOMIR))
  • 이준섭 (한국해양대학교 에너지자원공학과) ;
  • 유경근 (한국해양대학교 에너지자원공학과) ;
  • 박현규 (한국광해광업공단 비축사업처)
  • Received : 2023.06.08
  • Accepted : 2023.06.19
  • Published : 2023.06.30

Abstract

Leaching tests were conducted using sulfuric acid and sodium hydroxide solutions to remove impurities from domestic graphite concentrate. As a result of the leaching experiment using sulfuric acid solution and sodium hydroxide solution, respectively, the difference of removal efficiency was insignificant when the concentration of sodium hydroxide or sulfuric acid was 2 mol/L or more. The fixed carbon content increased with increasing the temperature in the sulfuric acid solution leaching, while it remains constant above 150℃ in sodium hydroxide solution. For the repeated sequential leaching tests, the leaching conditions were 2 mol/L NaOH, 200℃, 1 hour in the sodium hydroxide solution leaching and 2 mol/L H2SO4, 100℃, 1 hour in the sulfuric acid solution leaching, respectively. When sulfuric acid leaching followed by sodium hydroxide solution leaching was repeated 5 times, the fixed carbon increased to 99.95% and ash content decreased to 0.048%, while the fixed carbon increased to 99.98% and ash content was reduced to 0.018 when sodium hydroxide solution leaching followed by sulfuric acid solution leaching was repeated 5 times.

국내산 흑연정광으로부터 불순물을 제거하기 위해 황산용액 및 수산화나트륨용액을 이용하여 침출실험을 진행하였다. 황산용액과 수산화나트륨용액을 각각 사용하여 침출실험을 진행한 결과, 수산화나트륨과 황산의 농도가 2 mol/L 이상에서 제거효과의 차이가 미미하고, 황산용액침출에서 온도가 증가함에 따라 고정탄소함량이 증가하는 것에 비해 수산화나트륨용액에서는 150℃ 이상에서 큰 차이가 나타나지 않았다. 수산화나트륨용액침출은 2 mol/L NaOH, 200℃, 1시간의 조건으로 선정하고, 황산용액침출은 2 mol/L H2SO4, 100℃, 1 시간의 조건으로 선정하여 5회까지 반복하여 침출을 진행하였다. 황산용액침출 후 수산화나트륨용액침출을 5회 반복했을 때 고정탄소는 99.95 %까지 증가하였고, 회분은 0.048 %까지 감소하였다. 수산화나트륨용액침출 후 황산용액침출을 5회 반복한 결과, 고정탄소는 99.98 %, 회분은 0.018까지 감소하여 수산화나트륨용액 침출 후 황산용액침출을 수행한 결과가 다소 높게 나타났다.

Keywords

Acknowledgement

이 논문은 2020~2021년 한국광해광업공단의 기술연구사업비와 2022년도 산업통상자원부의 재원으로 해외자원개발협회의 지원을 받아 수행되었습니다(과제명: 자원개발 산합협력 컨소시엄-스마트마이닝 전문인력 양성, 과제번호:2021060003).

References

  1. Korea Mineral Resource Information Service (KOMIS), Mineral Information, https://www.komis.or.kr, June, 1, 2023.
  2. Lee, J., Lim, Y., Yoo, K., et al., 2022 : The Effect of Rotor Speed on the Circularity of Domestic Graphite, Resources Recycling, 31(6), pp.66-72. https://doi.org/10.7844/kirr.2022.31.6.66
  3. Kim, R., Lee, J., Park, J., et al., 2022 : Current Status in the Mining Industry of Critical Minerals for Battery (Li, Ni, Co, and C) in the Energy Transition Era, Journal of Mineral and Energy Resources, 59(2), pp.218-232. https://doi.org/10.32390/ksmer.2022.59.2.218
  4. Park, C. and Oh, S., 1999 : Anodic Properties of Needle Cokes-dreived Graphitic Materials in Lithium Secondary Batteries, Journal of the Korean Electrochemical Society, 2(4), pp.221-226. https://doi.org/10.5229/JKES.1999.2.4.221
  5. Kim, G. J., Yoon, J. J. and Lee, J. D., 2019 : Electrochemical properties of natural graphite coated with PFO-based pitch for lithium-ion battery anode, Korean Chemical Engineering Research, 57(5), pp.672-678.
  6. Lee, S. and Lee, J., 2019 : Electrochemical Performance of Graphite/Silicon/Pitch Anode Composites Bonded with Graphite Surface PVP and Silica Amine Function Group, Korean Chemical Engineering Research, 57(1), pp.118-123. https://doi.org/10.9713/KCER.2019.57.1.118
  7. Chehreh Chelgani, S., Rudolph, M., Kratzsch, R., et al., 2016 : A review of graphite beneficiation techniques. Mineral Processing and Extractive Metallurgy Review, 37(1), pp.58-68. https://doi.org/10.1080/08827508.2015.1115992
  8. Wang, H., Feng, Q., Tang, X., et al., 2016 : Preparation of high-purity graphite from a fine microcrystalline graphite concentrate: Effect of alkali roasting pre-treatment and acid leaching process, Separation Science and Technology, 51(14), pp.2465-2472. https://doi.org/10.1080/01496395.2016.1206933
  9. Li, Y. F., Zhu, S. F. and Wang, L., 2013 : Purification of natural graphite by microwave assisted acid leaching, Carbon, 55, pp.377-378. https://doi.org/10.1016/j.carbon.2012.12.059
  10. Yang, J., Fan, E., Lin, J., et al., 2021 : Recovery and reuse of anode graphite from spent lithium-ion batteries via citric acid leaching, ACS Applied Energy Materials, 4(6), pp.6261-6268. https://doi.org/10.1021/acsaem.1c01029
  11. Kim, Y. I., Baek, M. H. and Kim, D. S., 2007 : Treatment Features of Fluorine-containing Wastewater Using Calcium as a Precipitant for Its Reuse, Resources Recycling, 16(4), pp.27-32.
  12. Wang, H., Feng, Q., Tang, X., et al., 2016 : Preparation of high-purity graphite from a fine microcrystalline graphite concentrate: Effect of alkali roasting pre-treatment and acid leaching process, Separation Science and Technology, 51(14), pp.2465-2472. https://doi.org/10.1080/01496395.2016.1206933