DOI QR코드

DOI QR Code

A Study on the Leaching and Recovery of Lithium by Reaction between Ferric Chloride Etching Solution and Waste Lithium Iron Phosphate Cathode Powder

폐리튬인산철 양극재 분말과 염화철 에칭액과의 반응에 의한 리튬의 침출 및 회수에 대한 연구

  • Hee-Seon Kim (Advanced Materials and Processing Center, Institute for Advanced Engineering (IAE)) ;
  • Dae-Weon Kim (Advanced Materials and Processing Center, Institute for Advanced Engineering (IAE)) ;
  • Byung-Man Chae (KMC Co., LTD) ;
  • Sang-Woo Lee (KMC Co., LTD)
  • Received : 2023.03.29
  • Accepted : 2023.04.26
  • Published : 2023.06.30

Abstract

Efforts are currently underway to develop a method for efficiently recovering lithium from the cathode material of waste lithium iron phosphate batteries (LFP). The successful application of lithium battery recycling can address the regional ubiquity and price volatility of lithium resources, while also mitigating the environmental impact associated with both waste battery material and lithium production processes. The isomorphic substitution leaching process was used to recover lithium from spent lithium iron phosphate batteries. Lithium was leached by the isomorphic substitution of Fe2+ in LFP using a relatively inexpensive ferric chloride etching solution as a leaching agent. In the study, the leaching rate of lithium was compared using the ferric chloride etching solution at various multiples of the LFP molar ratio: 0.7, 1.0, 1.3, and 1.6 times. The highest lithium leaching rate was shown at about 98% when using 1.3 times the LFP molar ratio. Subsequently, to eliminate Fe, the leachate was treated with NaOH. The Fe-free solution was then used to synthesize lithium carbonate, and the harvested powder was characterized and validated. The surface shape and crystal phase were analyzed using SEM and XRD analysis, and impurities and purity were confirmed using ICP analysis.

폐리튬인산철 전지의 양극재로부터 리튬을 효율적으로 회수하기 위하여 활발하게 연구 중이며, 이는 리튬 자원의 지역 편재성 및 가격 변동성을 해소하고 환경오염 문제를 해결할 수 있다. 폐리튬인산철 전지로부터 리튬을 침출 및 회수하기 위하여 동형치환 침출 공정을 사용하였다. 상대적으로 저렴한 염화철 에칭액을 침출제로 사용하여 LFP의 Fe2+를 동형 치환하여 리튬을 침출하였다. 또한 추가적인 첨가제 및 추출제 없이 염화철 에칭액만을 사용하였으며, 염화철 에칭액을 LFP 이론적 몰 비 대비 0.7배, 1.0배, 1.3배, 그리고 1.6배로 하여 리튬의 침출율을 비교하였다. LFP 몰 비 대비 1.3배의 조건에서 약 98%로 가장 높은 리튬 침출율을 보였고 이후 침출액은 NaOH를 투입하여 pH 조절을 통하여 철을 제거하였다. 철이 제거된 용액으로부터 탄산리튬을 합성하였고, 그 분말 특성을 확인하였다.

Keywords

Acknowledgement

본 연구는 2022년도 산업통상자원부의 재원으로 한국에너지기술평가원의 지원을 받아 수행한 연구 과제입니다(재생자원의 저탄소 산업 원료화 기술개발 사업 No. 20229A10100100).

References

  1. Harper, G., Sommerville, R., Kendrick, E., et al., 2019 : Recycling lithium-ion batteries from electric vehicles, Nature, 575(7781), pp.75-86.  https://doi.org/10.1038/s41586-019-1682-5
  2. Gao, W., Liu, C., Cao, H., et al., 2018 : Comprehensive evaluation on effective leaching of critical metals from spent lithium-ion batteries, Waste Management, 75, pp. 477-485.  https://doi.org/10.1016/j.wasman.2018.02.023
  3. Zheng, X., Zhu, Z., Lin, X., et al., 2018 : A mini-review on metal recycling from spent lithium ion batteries, Engineering, 4(3), pp.361-370.  https://doi.org/10.1016/j.eng.2018.05.018
  4. Dorella, G., Mansur, M.B., 2007 : A study of the separation of cobalt from spent Li-ion battery residues, Journal of Power Sources, 170, pp.210-215.  https://doi.org/10.1016/j.jpowsour.2007.04.025
  5. Elwert, T., Hua, Q.S., Schneider, K., 2019 : Recycling of lithium iron phosphate batteries: Future prospects and research needs, Mater. Sci. Forum, 959 pp.49-68.  https://doi.org/10.4028/www.scientific.net/MSF.959.49
  6. Xiao, J. F., Li, J., Xu, Z. M., 2017 : Novel approach for in situ recovery of lithium carbonate from spent lithium ion batteries using vacuum metallurgy, Environ. Sci. Technol., 51(20), pp.1960-11966.  https://doi.org/10.1021/acs.est.7b02561
  7. Zhao, Y. L., Yuan, X. Z., Jiang, L. B., et al., 2020 : Regeneration and reutilization of cathode materials from spent lithium-ion batteries, Chem. Eng. J., 383, pp.123089. 
  8. Meshram, P., Pandey, B. D., Mankhand, T. R., 2014 : Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: A comprehensive review, Hydrometallurgy, 150, pp.192-208.  https://doi.org/10.1016/j.hydromet.2014.10.012
  9. Bennett, J. W., Jones, D., Huang, X., et al., 2018 : Dissolution of complex metal oxides from first-principles and thermodynamics: Cation removal from the (001) surface of Li (Ni1/3Mn1/3Co1/3)O2, Environmental Science & Technology, 52(10), pp.5792-5802.  https://doi.org/10.1021/acs.est.8b00054
  10. Kang, D. H. P., Chen, M., Ogunseitan, O. A., 2013 : Potential environmental and human health impacts of rechargeable lithium batteries in electronic waste, Environmental Science & Technology, 47(10), pp.5495-5503.  https://doi.org/10.1021/es400614y
  11. Chen, W. S. and Ho, H. J., 2018 : Recovery of Valuable Metals from Lithium-Ion Batteries NMC Cathode Waste Materials by Hydrometallurgical Methods, Metals, 8, pp.321-227. 
  12. Joo, S., Kim, D. G., Byun, S. Y., et al., 2021 : A Study on the Synthesis Behavior of Lithium Hydroxide by Type of Precipitant for Lithium Sulfate Recovered from Waste LIB, Resources Recycling, 30(1), pp.44-52.  https://doi.org/10.7844/KIRR.2021.30.1.44
  13. Kim, D. W., Park, J. R., Ahn, N. K., et al., 2019 : A review on the recovery of the lithium carbonate powders from lithium containing substances, J. of the Korean Crystal Growth and Crystal Technology, 29(3), pp.91-106. 
  14. Jin, Y. H., Kim, B. R. and Kim, D. W., 2021 : Correlation between Lithium Concentration and Ecotoxicoloigy in Lithium Contained Waste Water, Clean Technol., 27(1), pp.33-38. 
  15. Kim, B. R., Kim, D. W., Kim, T. H., et al., 2022 : A study on the Synthesis of Cathode Active Material Precursor from Waste Lithium Secondary Battery, J. of the Korean Crystal Growth and Crystal Technology, 32(2), pp.61-67.  https://doi.org/10.53619/KOBS.2022.7.2.1.32
  16. Wang, L., Li, J., Zhou, H., et al., 2018 : Regeneration cathode material mixture from spent lithium iron phosphate batteries, Journal of Materials Science: Materials in Electronics, 29, pp.9283-9290.  https://doi.org/10.1007/s10854-018-8958-7
  17. Song, X., Hu, T., Liang, C., et al., 2017 : Direct regeneration of cathode materials from spent lithium iron phosphate batteries using a solid phase sintering method, RSC advances, 7(8), pp.4783-4790.  https://doi.org/10.1039/C6RA27210J
  18. Song, W., Liu, J., You, L., et al., 2019 : Re-synthesis of nano-structured LiFePO4/graphene composite derived from spent lithium-ion battery for booming electric vehicle application, Journal of Power Sources, 419, pp.192-202.  https://doi.org/10.1016/j.jpowsour.2019.02.065
  19. Chen, X., Kang, D., Li, J., et al., 2020 : Gradient and facile extraction of valuable metals from spent lithium ion batteries for new cathode materials re-fabrication, Journal of Hazardous Materials, 389, pp.121887. 
  20. Fan, E., Li, L., Zhang, X., et al., 2018 : Selective recovery of Li and Fe from spent lithium-ion batteries by an environmentally friendly mechanochemical approach, ACS Sustainable Chemistry & Engineering, 6(8), pp.11029-11035.  https://doi.org/10.1021/acssuschemeng.8b02503
  21. Li, L., Bian, Y., Zh ang, X., et al., 2019 : A green and effective room-temperature recycling process of LiFePO4 cathode materials for lithium-ion batteries, Waste Management, 85, pp.437-444.  https://doi.org/10.1016/j.wasman.2019.01.012
  22. Yang, Y., Meng, X., Cao, H., et al., 2018 : Selective recovery of lithium from spent lithium iron phosphate batteries: a sustainable process, Green Chemistry, 20(13), pp.3121-3133.  https://doi.org/10.1039/C7GC03376A
  23. Zhang, J., Hu, J., Liu, Y., et al., 2019 : Sustainable and Facile Method for the Selective Recovery of Lithium from Cathode Scrap of Spent LiFePO4 Batteries, ACS Sustain. Chem. Eng., 7(6), pp.5626-5631.  https://doi.org/10.1021/acssuschemeng.9b00404
  24. Liu, K., Liu, L., Tan, Q., et al., 2021 : Selective extraction of lithium from a spent lithium iron phosphate battery by mechanochemical solid-phase oxidation, Green Chemistry, 23(3), pp.1344-1352.  https://doi.org/10.1039/D0GC03683H
  25. Peng, D., Zhang, J., Zou, J., et al., 2021 : Closed-loop regeneration of LiFePO4 from spent lithium-ion batteries: A "feed three birds with one scone" strategy toward advanced cathode materials, Journal of Cleaner Production, 316, pp.128098-128109.  https://doi.org/10.1016/j.jclepro.2021.128098
  26. Gangaja, B., Nair, S. and Santhanagopalan, D., 2021 : Reuse, recycle, and regeneration of LiFePO4 cathode from spent lithium-ion batteries for rechargeable lithium-and sodium-ion batteries, ACS Sustainable Chemistry & Engineering, 9(13), pp.4711-4721.  https://doi.org/10.1021/acssuschemeng.0c08487
  27. Kim H. S., Kim D. W., Jang D. H., et al., 2022 : A Study on the Leaching Effect and Selective Recovery of Lithium Element by Persulfate-based Oxidizing Agents from Waste LiFePO4 Cathode, Resources Recycling, 31(4), pp. 40-48.  https://doi.org/10.7844/KIRR.2022.31.2.40
  28. Liu, K., Tan, Q., Liu, L., et al., 2019 : Acid-free and selective extraction of lithium from spent lithium iron phosphate batteries via a mechanochemically induced isomorphic substitution, Environmental Science & Technology, 53(16), pp.9781-9788.  https://doi.org/10.1021/acs.est.9b01919
  29. Dai, Y., Xu, Z., Hua, D., et al., 2020 : Theoretical-molar Fe3+ recovering lithium from spent LiFePO4 batteries: an acid-free, efficient, and selective process, Journal of Hazardous Materials, 396, pp.122707. 
  30. Niu, Y., Peng, X., Li, J., et al., 2023 : Recovery of Li2CO3 and FePO4 from spent LiFePO4 by coupling technics of isomorphic substitution leaching and solvent extraction, Chinese Journal of Chemical Engineering, 54, pp.306-315. 
  31. Yan, T., Zhong, S., Zhou, M., et al., 2020 : High-efficiency method for recycling lithium from spent LiFePO4 cathode, Nanotechnology Reviews, 9(1), pp.1586-1593.  https://doi.org/10.1515/ntrev-2020-0119
  32. Chen, W.-S., Lee, C.-H. and Ho, H.-J., 2018 : Purification of lithium carbonate from sulphate solutions through hydrogenation using the dowex G26 resin, Applied Sciences, 8(11), pp.2252. 
  33. Ahn, H. J., Ahn, J. W., Lee, K. W., et al., 2014 : Recovery of Li from the Lithium Containing Waste Solution by D2EHPA, Resources Recycling, 23(5), pp.21-27. https://doi.org/10.7844/kirr.2014.23.5.21