DOI QR코드

DOI QR Code

Rubidium Market Trends, Recovery Technologies, and the Relevant Future Countermeasures

루비듐 시장 및 회수 동향에 따른 향후 관련 대응방안

  • Sang-hun Lee (Department of Environmental Science, Keimyung University)
  • Received : 2023.06.07
  • Accepted : 2023.06.26
  • Published : 2023.06.30

Abstract

This study discussed production, demand, and future prospects of rubidium, which is an alkali group metal that is highly reactive to various media and requires carefulness in handling, but no significant environmental hazard of rubidium has been reported yet. Rubidium is used in various fields such as optoelectronic equipment, biomedical, and chemical industries. Because of difficulty in production as well as limited demand, the transaction price of rubidium is relatively high, but its detail information such as market status and potential growth is uncertain. However, if the mass production of versatile ultra-high-performance equipment such as quantum computers and the necessity of rubidium use in the equipment are confirmed, there is a possibility that the rubidium market will expand in the future. Rubidium is often found together with lithium, beryllium, and cesium, and may be present in granite containing minerals such as lepidolite and pollucite, as well as in seawater and industrial waste. Several technologies such as acid leaching, roasting, solvent extraction, and adsorption are used to recover rubidium. The maximum recovery efficiency of the rubidium from the sources and the processing above is generally high, but, in many practices, rubidium is not the main recovery target, and therefore the actual recovery effects should depend on presence of other valuable components or impurities, together with recovery costs, energy consumption, environmental issues, etc. In conclusion, although the current production and consumption of rubidium are limited, with consideration of the possible market fluctuations according to the emergence of large-scale demand sources, etc., further investigations by related institutions should be necessary.

본 연구에서는 알칼리 금속 중 하나인 루비듐의 생산과 수요, 그리고 향후 전망을 분석하였다. 루비듐은 알칼리족 금속으로서 다양한 매질에 대한 반응성이 뛰어나 취급에 유의를 요하지만 환경적으로는 크게 문제시 되지 않은 물질이다. 루비듐은 광전기 장비, 생물의료, 화학산업 등 특수한 분야에서 사용된다. 생산이 어렵고 수요도 제한적이어서 거래 가격이 비교적 높게 형성되어 있지만, 시장 현황이나 성장 가능성과 같은 정보는 불확실한 상황이다. 다만, 양자컴퓨터와 같이 범용성이 있는 초고성능 장비의 대량 생산과 해당 장비 내 루비듐 사용의 필수성이 확실시된다면, 향후 루비듐 시장이 확대될 가능성도 있을 것이다. 루비듐은 종종 리튬, 베릴륨, 세슘과 함께 발견되며, Lepidolite이나 Pollucite 등의 광물을 포함하는 화강암이나 해수나 폐기물에 함유될 수 있다. 루비듐 회수에는 산침출, 배소법, 용매 추출, 흡착 등의 기술이 사용되며, 상기 광물 및 처리기술을 통한 루비듐 최대 회수율이 높다고 알려져 있다, 그러나, 많은 경우 루비듐이 주요회수 대상은 아니기 때문에 타유가성분, 불순물, 회수 비용, 에너지 소비, 환경 문제 등에 따라 실제 회수율은 변동될 수 있다. 결론적으로 루비듐은 생산 및 소비가 제한되어 있는 반면, 향후 대량 수요처의 대두에 따라 시장변동이 가능한 만큼 이에 관련된 관계기관의 추가 조사 등이 필요할 것으로 보인다.

Keywords

Acknowledgement

본 연구는 한국지질자원연구원 주요사업인 '국내 부존 바나듐(V) 광물자원 선광/제련/활용기술 개발(GP2020-013)'의 위탁과제의 지원으로 수행되었습니다.

References

  1. KOMIS (Korea Mineral Resource Information Service), 2023 : Rubidium ; KOMIS report 2023.
  2. LG, 2019 : https://blog.lgchem.com/2019/01/23_rb/. Accessed 1 June 2023.
  3. USGS (United States Geological Survey), 2023 : Mineral commodity summaries - Rubidium.
  4. USGS (United States Geological Survey), 2020 : Mineral commodity summaries - Rubidium.
  5. USGS, 2022 : Mineral commodity summaries - Rubidium.
  6. USGS, 2020 : Mineral commodity summaries - Rubidium.
  7. Xing, P., Wang, C., Chen, Y., et al., 2021 ; Rubidium extraction from mineral and brine resources: A review, Hydrometallurgy, 203, pp.105644.
  8. Budnicka, M., Sobiech, M., Kolmas, J., et al., 2022 : Frontiers in ion imprinting of alkali- and alkaline-earth metal ions - Recent advancements and application to environmental, food and biomedical analysis, Trends in Analytical Chemistry, 156, pp.116711.
  9. USGS, 2005 : Mineral commodity profiles: Rubidium ; USGS Open-File Report 03-045.
  10. NIER (National Institute of Environmental Research), 2011 : Hazardous material properties, toxicity, and management information abstract: Hydrogen chloride, NIER official report.
  11. Georgescu, I., 2015 : Rubidium round-the-clock, Nature Chemistry, 7, 1034.
  12. Suba, A., Selvarajan, P., Devadasan, J.J., 2022 : Rubidium chloride doped magnesium oxide nanomaterial by using green synthesis and its characterization, Chemical Physics Letters, 793, pp.139463.
  13. Shin, Y-I., 2017 : Rediscovery of gas: very cold quantum gas, https://horizon.kias.re.kr/18713/, Accessed 1 June 2023.
  14. Chung, J.H., Choi, B.C., 2019 : Quantum computer, the dream computer that calculates at the speed of light, KISTEP Issue Paper, 2019. 7.
  15. Vieceli, N., Nogueira, C.A., Pereira, M.F.C., et al., 2018 : Recovery of lithium carbonate by acid digestion and hydrometallurgical processing from mechanically activated lepidolite, Hydrometallurgy, 175, pp.1-10. https://doi.org/10.1016/j.hydromet.2017.10.022
  16. Liu, J., Yin, Z., Li, X., et al., 2019 : Recovery of valuable metals from lepidolite by atmosphere leaching and kinetics on dissolution of lithium, Trans. Nonferrous Metals Soc. China, 29, pp.641-649. https://doi.org/10.1016/S1003-6326(19)64974-5
  17. Yan, Q., Li, X., Wang, Z., et al., 2012 : Extraction of lithium from lepidolite by sulfation roasting and water leaching, Int. J. Miner. Process, 110-111, pp.1-5. https://doi.org/10.1016/j.minpro.2012.03.005
  18. Zhang, X., Tan, X., Li, C., et al., 2019 : Energy-efficient and simultaneous extraction of lithium, rubidium and cesium from lepidolite concentrate via sulfuric acid baking and water leaching, Hydrometallurgy, 185, pp.244-249. https://doi.org/10.1016/j.hydromet.2019.02.011
  19. Mulwanda, J., Senanayake, G., Oskierski, H., et al., 2021 : Leaching of lepidolite and recovery of lithium hydroxide from purified alkaline pressure leach liquor by phosphate precipitation and lime addition, Hydrometallurgy, 201, pp.105538.
  20. Ertan, B., 2021 : Rubidium extraction ; Current Approaches in Science and Technology Research, 15, pp.53-59. https://doi.org/10.9734/bpi/castr/v15/2392F
  21. Naidu, G., Jeong, S., Choi, Y., et al., 2018 : Valuable rubidium extraction from potassium reduced seawater brine, J. Clean. Prod., 174, pp.1079-1088. https://doi.org/10.1016/j.jclepro.2017.11.042
  22. Nygren, E., 2019 : Recovery of rubidium from power plant fly ash, Ph.D. Dissertation, University of Jyvaskyla.
  23. Tavakoli Mohammadi, M.R., Javad Koleini, S.M., Javanshir, S., et al., 2015 : Extraction of rubidium from gold waste: Process optimization, Hydrometallurgy, pp.151, 25-32. https://doi.org/10.1016/j.hydromet.2014.10.016
  24. Ertan, B., Erdogan, Y., 2016 : Separation of rubidium from boron containing clay wastes using solvent extraction, Powder Technology, 295, pp.254-260. https://doi.org/10.1016/j.powtec.2016.03.043
  25. Zhou, L., Yuan, T., Li, R., et al., 2015 : Extraction of rubidium from kaolin clay waste: Process study, Hydrometallurgy, 158, pp.61-67. https://doi.org/10.1016/j.hydromet.2015.10.010
  26. Paukov, E.I., Kovalevskaya, Y.A., Kiseleva, I.A., et al., 2010 : A low-temperature heat capacity study of natural lithium micas-heat capacity of zinnwaldite, J. Therm. Anal. Calorim., 99, pp.709-712. https://doi.org/10.1007/s10973-009-0210-5
  27. Shan, Z.Q., Shu, X.Q., Feng, J.F., et al., 2013 : Modified calcination conditions of rare alkali metal Rb containing muscovite, (KAl2[AlSi3O10](OH)2), Rare Metals, 6, pp. 632-635. https://doi.org/10.1007/s12598-013-0068-3
  28. Zheng, S., Li, P., Tian, L., et al., 2016 : A chlorination roasting process to extract rubidium from distinctive kaolin ore with alternative chlorinating reagent, Int. J. Miner. Process, 157, pp.21-27. https://doi.org/10.1016/j.minpro.2016.09.006
  29. Ertan, B., Erdogan, Y., 2016 : Separation of rubidium from boron containing clay wastes using solvent extraction, Powder Technology, 295, pp.254-260. https://doi.org/10.1016/j.powtec.2016.03.043
  30. Zeng, Q., Huang, L., Ouyang, D., et al., 2019 : Process optimization on the extraction of rubidium from rubidium-bearing biotite, Miner. Eng., 137, pp.87-93. https://doi.org/10.1016/j.mineng.2019.03.020
  31. Xing, P., Wang, C., Wang, L., et al., 2018 : Clean and efficient process for the extraction of rubidium from granitic rubidium ore, J. Clean. Prod., 196, pp.64-73. https://doi.org/10.1016/j.jclepro.2018.06.041
  32. Wang, J., Hu, H., Wu, K., 2020 : Extraction of lithium, rubidium and cesium from lithium porcelain stone, Hydrometallurgy, 191, pp.105233.
  33. Vu, H., Bernardi, J., Jandova, J., et al., 2013 : Lithium and rubidium extraction from zinnwaldite by alkali digestion process: Sintering mechanism and leaching kinetic, Int. J. Miner. Process, 123, pp.9-17. https://doi.org/10.1016/j.minpro.2013.04.014
  34. Yan, Q., Li, X., Wang, Z., et al., 2012 : Extraction of valuable metals from lepidolite, Hydrometallurgy, 117-118, pp.116-118. https://doi.org/10.1016/j.hydromet.2012.02.004
  35. Lv, Y., Xing, P., Ma, B., et al., 2020 : Extraction of lithium and rubidium from polylithionite via alkaline leaching combined with solvent extraction and precipitation, ACS Sustain Chem. Eng., 8(38), pp.14462-14470. https://doi.org/10.1021/acssuschemeng.0c04437
  36. Tian, L., Gong, A., Wu, X., et al., 2020 : Non-isothermal kinetic studies of rubidium extraction from muscovite using a chlorination roasting-water leaching process, Powder Technol., 373, pp.362-368. https://doi.org/10.1016/j.powtec.2020.06.015