DOI QR코드

DOI QR Code

Effects of Natural Alternative Sweeteners on Metabolic Diseases

  • Eunju Kim (Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston)
  • 투고 : 2023.04.23
  • 심사 : 2023.07.11
  • 발행 : 2023.07.31

초록

The rising prevalence of obesity and diabetes is a significant health concern both in globally and is now regarded as a worldwide epidemic. Added sugars like sucrose and high-fructose corn syrup (HFCS) are a major concern due to their link with an increased incidence of diet-induced obesity and diabetes. The purpose of this review is to provide insight into the effects of natural sweeteners as alternatives to sucrose and HFCS, which are known to have negative impacts on metabolic diseases and to promote further research on sugar consumption with a focus on improving metabolic health. The collective evidences suggest that natural alternative sweeteners have positive impacts on various markers associated with obesity and diabetes, including body weight gain, hepatic fat accumulation, abnormal blood glucose or lipid homeostasis, and insulin resistance. Taken together, natural alternative sweeteners can be useful substitutes to decrease the risk of obesity and diabetes compared with sucrose and HFCS.

키워드

참고문헌

  1. Centers for Disease Control and Prevention (US). Adult obesity facts. Atlanta: Centers for Disease Control and Prevention; 2022. 
  2. World Health Organization. WHO European regional obesity report 2022. Copenhagen: World Health Organization Regional Office for Europe; 2022. 
  3. Lackey DE, Olefsky JM. Regulation of metabolism by the innate immune system. Nat Rev Endocrinol 2016;12:15-28.
  4. Priest C, Tontonoz P. Inter-organ cross-talk in metabolic syndrome. Nat Metab 2019;1:1177-88.
  5. Colangeli L, Escobar Marcillo DI, Simonelli V, Iorio E, Rinaldi T, Sbraccia P, Fortini P, Guglielmi V. The crosstalk between gut microbiota and white adipose tissue mitochondria in obesity. Nutrients 2023;15:1723.
  6. Machado MV, Cortez-Pinto H. NAFLD, MAFLD and obesity: brothers in arms? Nat Rev Gastroenterol Hepatol 2023;20:67-8.
  7. Singh GM, Danaei G, Farzadfar F, Stevens GA, Woodward M, Wormser D, Kaptoge S, Whitlock G, Qiao Q, Lewington S, Di Angelantonio E, Vander Hoorn S, Lawes CM, Ali MK, Mozaffarian D, Ezzati M; Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group; Asia-Pacific Cohort Studies Collaboration (APCSC); Diabetes Epidemiology: Collaborative analysis of Diagnostic criteria in Europe (DECODE); Emerging Risk Factor Collaboration (ERFC); Prospective Studies Collaboration (PSC). The age-specific quantitative effects of metabolic risk factors on cardiovascular diseases and diabetes: a pooled analysis. PLoS One 2013;8:e65174.
  8. Aballay LR, Eynard AR, Diaz MP, Navarro A, Munoz SE. Overweight and obesity: a review of their relationship to metabolic syndrome, cardiovascular disease, and cancer in South America. Nutr Rev 2013;71:168-79.
  9. Jeong SM, Kang MJ, Choi HN, Kim JH, Kim JI. Quercetin ameliorates hyperglycemia and dyslipidemia and improves antioxidant status in type 2 diabetic db/db mice. Nutr Res Pract 2012;6:201-7.
  10. Lauby-Secretan B, Scoccianti C, Loomis D, Grosse Y, Bianchini F, Straif K; International Agency for Research on Cancer Handbook Working Group. Body fatness and cancer-viewpoint of the IARC Working Group. N Engl J Med 2016;375:794-8.
  11. Avgerinos KI, Spyrou N, Mantzoros CS, Dalamaga M. Obesity and cancer risk: emerging biological mechanisms and perspectives. Metabolism 2019;92:121-35.
  12. Petrelli F, Cortellini A, Indini A, Tomasello G, Ghidini M, Nigro O, Salati M, Dottorini L, Iaculli A, Varricchio A, Rampulla V, Barni S, Cabiddu M, Bossi A, Ghidini A, Zaniboni A. Association of obesity with survival outcomes in patients with cancer: a systematic review and meta-analysis. JAMA Netw Open 2021;4:e213520.
  13. Jiang L, Tian W, Wang Y, Rong J, Bao C, Liu Y, Zhao Y, Wang C. Body mass index and susceptibility to knee osteoarthritis: a systematic review and meta-analysis. Joint Bone Spine 2012;79:291-7.
  14. Herzog W. Reflections on obesity, exercise, and musculoskeletal health. J Sport Health Sci 2020;9:108-9.
  15. Wondmkun YT. Obesity, insulin resistance, and type 2 diabetes: associations and therapeutic implications. Diabetes Metab Syndr Obes 2020;13:3611-6. 
  16. Longo M, Zatterale F, Naderi J, Parrillo L, Formisano P, Raciti GA, Beguinot F, Miele C. Adipose tissue dysfunction as determinant of obesity-associated metabolic complications. Int J Mol Sci 2019;20:2358.
  17. Colak E, Pap D. The role of oxidative stress in the development of obesity and obesity-related metabolic disorders. J Med Biochem 2021;40:1-9.
  18. Forlani G, Giorda C, Manti R, Mazzella N, De Cosmo S, Rossi MC, Nicolucci A, Di Bartolo P, Ceriello A, Guida P; AMD-Annals Study Group. The burden of NAFLD and its characteristics in a nationwide population with type 2 diabetes. J Diabetes Res 2016;2016:2931985.
  19. Calzadilla Bertot L, Adams LA. The natural course of non-alcoholic fatty liver disease. Int J Mol Sci 2016;17:774.
  20. Rosso C, Kazankov K, Younes R, Esmaili S, Marietti M, Sacco M, Carli F, Gaggini M, Salomone F, Moller HJ, Abate ML, Vilstrup H, Gastaldelli A, George J, Gronbaek H, Bugianesi E. Crosstalk between adipose tissue insulin resistance and liver macrophages in non-alcoholic fatty liver disease. J Hepatol 2019;71:1012-21.
  21. Lonardo A, Ballestri S, Marchesini G, Angulo P, Loria P. Nonalcoholic fatty liver disease: a precursor of the metabolic syndrome. Dig Liver Dis 2015;47:181-90.
  22. Adams LA, Lindor KD. Nonalcoholic fatty liver disease. Ann Epidemiol 2007;17:863-9.
  23. Jimba S, Nakagami T, Takahashi M, Wakamatsu T, Hirota Y, Iwamoto Y, Wasada T. Prevalence of non-alcoholic fatty liver disease and its association with impaired glucose metabolism in Japanese adults. Diabet Med 2005;22:1141-5.
  24. Kojta I, Chacinska M, Blachnio-Zabielska A. Obesity, bioactive lipids, and adipose tissue inflammation in insulin resistance. Nutrients 2020;12:1305.
  25. Qureshi K, Abrams GA. Metabolic liver disease of obesity and role of adipose tissue in the pathogenesis of nonalcoholic fatty liver disease. World J Gastroenterol 2007;13:3540-53.
  26. Azzu V, Vacca M, Virtue S, Allison M, Vidal-Puig A. Adipose tissue-liver cross talk in the control of whole-body metabolism: implications in nonalcoholic fatty liver disease. Gastroenterology 2020;158:1899-912.
  27. Hazlehurst JM, Woods C, Marjot T, Cobbold JF, Tomlinson JW. Non-alcoholic fatty liver disease and diabetes. Metabolism 2016;65:1096-108.
  28. Milic S, Lulic D, Stimac D. Non-alcoholic fatty liver disease and obesity: biochemical, metabolic and clinical presentations. World J Gastroenterol 2014;20:9330-7.
  29. Felig P, Sherwin RS, Soman V, Wahren J, Hendler R, Sacca L, Eigler N, Goldberg D, Walesky M. Hormonal interactions in the regulation of blood glucose. Recent Prog Horm Res 1979;35:501-32.
  30. Mozaffarian D. Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: a comprehensive review. Circulation 2016;133:187-225.
  31. Medina-Remon A, Kirwan R, Lamuela-Raventos RM, Estruch R. Dietary patterns and the risk of obesity, type 2 diabetes mellitus, cardiovascular diseases, asthma, and neurodegenerative diseases. Crit Rev Food Sci Nutr 2018;58:262-96.
  32. Romieu I, Dossus L, Barquera S, Blottiere HM, Franks PW, Gunter M, Hwalla N, Hursting SD, Leitzmann M, Margetts B, Nishida C, Potischman N, Seidell J, Stepien M, Wang Y, Westerterp K, Winichagoon P, Wiseman M, Willett WC; IARC working group on Energy Balance and Obesity. Energy balance and obesity: what are the main drivers? Cancer Causes Control 2017;28:247-58.
  33. Jensen T, Abdelmalek MF, Sullivan S, Nadeau KJ, Green M, Roncal C, Nakagawa T, Kuwabara M, Sato Y, Kang DH, Tolan DR, Sanchez-Lozada LG, Rosen HR, Lanaspa MA, Diehl AM, Johnson RJ. Fructose and sugar: a major mediator of non-alcoholic fatty liver disease. J Hepatol 2018;68:1063-75. 
  34. Stanhope KL. Sugar consumption, metabolic disease and obesity: the state of the controversy. Crit Rev Clin Lab Sci 2016;53:52-67.
  35. Bray GA, Popkin BM. Dietary sugar and body weight: have we reached a crisis in the epidemic of obesity and diabetes?: health be damned! Pour on the sugar. Diabetes Care 2014;37:950-6.
  36. Food and Drug Administration (US). Why are added sugars now listed on the nutrition facts label? [Internet]. Available from https://www.fda.gov/food/new-nutrition-facts-label/added-sugars-new-nutrition-facts-label#:~:text=The%20Dietary%20Guidelines%20for%20Americans,of%20added%20sugars%20per%20day. [cited 2023 April 11]. 
  37. Van Horn L, Carson JA, Appel LJ, Burke LE, Economos C, Karmally W, Lancaster K, Lichtenstein AH, Johnson RK, Thomas RJ, Vos M, Wylie-Rosett J, Kris-Etherton P; American Heart Association Nutrition Committee of the Council on Lifestyle and Cardiometabolic Health; Council on Cardiovascular Disease in the Young; Council on Cardiovascular and Stroke Nursing; Council on Clinical Cardiology; and Stroke Council. Recommended dietary pattern to achieve adherence to the American Heart Association/American College of Cardiology (AHA/ACC) guidelines: a scientific statement from the American Heart Association. Circulation 2016;134:e505-29.
  38. United States Department of Agriculture. Sugar and sweetener yearbook tables. Washington, D.C.: United States Department of Agriculture; 2018. 
  39. Mathias KC, Slining MM, Popkin BM. Foods and beverages associated with higher intake of sugar-sweetened beverages. Am J Prev Med 2013;44:351-7.
  40. Kopp W. How western diet and lifestyle drive the pandemic of obesity and civilization diseases. Diabetes Metab Syndr Obes 2019;12:2221-36.
  41. White JS. Straight talk about high-fructose corn syrup: what it is and what it ain't. Am J Clin Nutr 2008;88:1716S-21S.
  42. White JS. Challenging the fructose hypothesis: new perspectives on fructose consumption and metabolism. Adv Nutr 2013;4:246-56.
  43. Teff KL, Elliott SS, Tschop M, Kieffer TJ, Rader D, Heiman M, Townsend RR, Keim NL, D'Alessio D, Havel PJ. Dietary fructose reduces circulating insulin and leptin, attenuates postprandial suppression of ghrelin, and increases triglycerides in women. J Clin Endocrinol Metab 2004;89:2963-72.
  44. Rippe JM. The health implications of sucrose, high-fructose corn syrup, and fructose: what do we really know? J Diabetes Sci Technol 2010;4:1008-11.
  45. Stanhope KL, Havel PJ. Endocrine and metabolic effects of consuming beverages sweetened with fructose, glucose, sucrose, or high-fructose corn syrup. Am J Clin Nutr 2008;88:1733S-7S.
  46. Hanover LM, White JS. Manufacturing, composition, and applications of fructose. Am J Clin Nutr 1993;58:724S-32S.
  47. Peters S, Rose T, Moser M. Sucrose: a prospering and sustainable organic raw material. Top Curr Chem 2010;294:1-23.
  48. Rosensweig NS, Herman RH. Control of jejunal sucrase and maltase activity by dietary sucrose or fructose in man. A model for the study of enzyme regulation in man. J Clin Invest 1968;47:2253-62.
  49. Chain EB, Mansford KR, Pocchiari F. The absorption of sucrose, maltose and higher oligosaccharides from the isolated rat small intestine. J Physiol 1960;154:39-51.
  50. Gray GM. Carbohydrate digestion and absorption. Role of the small intestine. N Engl J Med 1975;292:1225-30. 
  51. Raben A, Vasilaras TH, Moller AC, Astrup A. Sucrose compared with artificial sweeteners: different effects on ad libitum food intake and body weight after 10 wk of supplementation in overweight subjects. Am J Clin Nutr 2002;76:721-9.
  52. Storlien LH, Kraegen EW, Jenkins AB, Chisholm DJ. Effects of sucrose vs starch diets on in vivo insulin action, thermogenesis, and obesity in rats. Am J Clin Nutr 1988;47:420-7.
  53. Goodson S, Halford JC, Jackson HC, Blundell JE. Paradoxical effects of a high sucrose diet: high energy intake and reduced body weight gain. Appetite 2001;37:253-4.
  54. Grant KI, Marais MP, Dhansay MA. Sucrose in a lipid-rich meal amplifies the postprandial excursion of serum and lipoprotein triglyceride and cholesterol concentrations by decreasing triglyceride clearance. Am J Clin Nutr 1994;59:853-60.
  55. Kanazawa M, Xue CY, Kageyama H, Suzuki E, Ito R, Namba Y, Osaka T, Kimura S, Inoue S. Effects of a high-sucrose diet on body weight, plasma triglycerides, and stress tolerance. Nutr Rev 2003;61:S27-33.
  56. Keno Y, Matsuzawa Y, Tokunaga K, Fujioka S, Kawamoto T, Kobatake T, Tarui S. High sucrose diet increases visceral fat accumulation in VMH-lesioned obese rats. Int J Obes 1991;15:205-11.
  57. Rovenko BM, Kubrak OI, Gospodaryov DV, Perkhulyn NV, Yurkevych IS, Sanz A, Lushchak OV, Lushchak VI. High sucrose consumption promotes obesity whereas its low consumption induces oxidative stress in Drosophila melanogaster. J Insect Physiol 2015;79:42-54.
  58. Forshee RA, Storey ML, Allison DB, Glinsmann WH, Hein GL, Lineback DR, Miller SA, Nicklas TA, Weaver GA, White JS. A critical examination of the evidence relating high fructose corn syrup and weight gain. Crit Rev Food Sci Nutr 2007;47:561-82.
  59. Rippe JM, Angelopoulos TJ. Sucrose, high-fructose corn syrup, and fructose, their metabolism and potential health effects: what do we really know? Adv Nutr 2013;4:236-45.
  60. Goran MI, Ulijaszek SJ, Ventura EE. High fructose corn syrup and diabetes prevalence: a global perspective. Glob Public Health 2013;8:55-64.
  61. Bocarsly ME, Powell ES, Avena NM, Hoebel BG. High-fructose corn syrup causes characteristics of obesity in rats: increased body weight, body fat and triglyceride levels. Pharmacol Biochem Behav 2010;97:101-6.
  62. Alzamendi A, Giovambattista A, Raschia A, Madrid V, Gaillard RC, Rebolledo O, Gagliardino JJ, Spinedi E. Fructose-rich diet-induced abdominal adipose tissue endocrine dysfunction in normal male rats. Endocrine 2009;35:227-32.
  63. Melanson KJ, Angelopoulos TJ, Nguyen V, Zukley L, Lowndes J, Rippe JM. High-fructose corn syrup, energy intake, and appetite regulation. Am J Clin Nutr 2008;88:1738S-44S.
  64. Shapiro A, Mu W, Roncal C, Cheng KY, Johnson RJ, Scarpace PJ. Fructose-induced leptin resistance exacerbates weight gain in response to subsequent high-fat feeding. Am J Physiol Regul Integr Comp Physiol 2008;295:R1370-5.
  65. Le MT, Frye RF, Rivard CJ, Cheng J, McFann KK, Segal MS, Johnson RJ, Johnson JA. Effects of high-fructose corn syrup and sucrose on the pharmacokinetics of fructose and acute metabolic and hemodynamic responses in healthy subjects. Metabolism 2012;61:641-51.
  66. Mayes PA. Intermediary metabolism of fructose. Am J Clin Nutr 1993;58:754S-65S.
  67. Spruss A, Bergheim I. Dietary fructose and intestinal barrier: potential risk factor in the pathogenesis of nonalcoholic fatty liver disease. J Nutr Biochem 2009;20:657-62.
  68. Havel PJ. Dietary fructose: implications for dysregulation of energy homeostasis and lipid/carbohydrate metabolism. Nutr Rev 2005;63:133-57.
  69. Elliott SS, Keim NL, Stern JS, Teff K, Havel PJ. Fructose, weight gain, and the insulin resistance syndrome. Am J Clin Nutr 2002;76:911-22.
  70. Dhingra R, Sullivan L, Jacques PF, Wang TJ, Fox CS, Meigs JB, D'Agostino RB, Gaziano JM, Vasan RS. Soft drink consumption and risk of developing cardiometabolic risk factors and the metabolic syndrome in middle-aged adults in the community. Circulation 2007;116:480-8.
  71. Stanhope KL, Schwarz JM, Keim NL, Griffen SC, Bremer AA, Graham JL, Hatcher B, Cox CL, Dyachenko A, Zhang W, McGahan JP, Seibert A, Krauss RM, Chiu S, Schaefer EJ, Ai M, Otokozawa S, Nakajima K, Nakano T, Beysen C, Hellerstein MK, Berglund L, Havel PJ. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest 2009;119:1322-34.
  72. Reyna NY, Cano C, Bermudez VJ, Medina MT, Souki AJ, Ambard M, Nunez M, Ferrer MA, Inglett GE. Sweeteners and beta-glucans improve metabolic and anthropometrics variables in well controlled type 2 diabetic patients. Am J Ther 2003;10:438-43.
  73. Gregersen S, Jeppesen PB, Holst JJ, Hermansen K. Antihyperglycemic effects of stevioside in type 2 diabetic subjects. Metabolism 2004;53:73-6.
  74. Stanhope KL. Sugar consumption, metabolic disease and obesity: the state of the controversy. Crit Rev Clin Lab Sci 2016;53:52-67.
  75. Wolever TM, Piekarz A, Hollands M, Younker K. Sugar alcohols and diabetes: a review. Can J Diabetes 2002;26:356-62. 
  76. Chukwuma CI, Islam MS. Effects of xylitol on carbohydrate digesting enzymes activity, intestinal glucose absorption and muscle glucose uptake: a multi-mode study. Food Funct 2015;6:955-62.
  77. Boesten DM, Berger A, de Cock P, Dong H, Hammock BD, den Hartog GJ, Bast A. Multi-targeted mechanisms underlying the endothelial protective effects of the diabetic-safe sweetener erythritol. PLoS One 2013;8:e65741.
  78. Rahman MA, Islam MS. Xylitol improves pancreatic islets morphology to ameliorate type 2 diabetes in rats: a dose response study. J Food Sci 2014;79:H1436-42.
  79. Amo K, Arai H, Uebanso T, Fukaya M, Koganei M, Sasaki H, Yamamoto H, Taketani Y, Takeda E. Effects of xylitol on metabolic parameters and visceral fat accumulation. J Clin Biochem Nutr 2011;49:1-7.
  80. Bae YJ, Bak YK, Kim B, Kim MS, Lee JH, Sung MK. Coconut-derived D-xylose affects postprandial glucose and insulin responses in healthy individuals. Nutr Res Pract 2011;5:533-9.
  81. Seri K, Sanai K, Matsuo N, Kawakubo K, Xue C, Inoue S. L-arabinose selectively inhibits intestinal sucrase in an uncompetitive manner and suppresses glycemic response after sucrose ingestion in animals. Metabolism 1996;45:1368-74.
  82. Fordtran JS, Soergel KH, Ingelfinger FJ. Intestinal absorption of D-xylose in man. N Engl J Med 1962;267:274-9.
  83. Haeney MR, Culank LS, Montgomery RD, Sammons HG. Evaluation of xylose absorption as measured in blood and urine: a one-hour blood xylose screening test in malabsorption. Gastroenterology 1978;75:393-400.
  84. Gruzman A, Shamni O, Ben Yakir M, Sandovski D, Elgart A, Alpert E, Cohen G, Hoffman A, Katzhendler Y, Cerasi E, Sasson S. Novel D-xylose derivatives stimulate muscle glucose uptake by activating AMP-activated protein kinase alpha. J Med Chem 2008;51:8096-108.
  85. Kim E, Kim YS, Kim KM, Jung S, Yoo SH, Kim Y. D-Xylose as a sugar complement regulates blood glucose levels by suppressing phosphoenolpyruvate carboxylase (PEPCK) in streptozotocin-nicotinamide-induced diabetic rats and by enhancing glucose uptake in vitro. Nutr Res Pract 2016;10:11-8. 
  86. Lim E, Lim JY, Shin JH, Seok PR, Jung S, Yoo SH, Kim Y. D-Xylose suppresses adipogenesis and regulates lipid metabolism genes in high-fat diet-induced obese mice. Nutr Res 2015;35:626-36.
  87. Mooradian AD, Smith M, Tokuda M. The role of artificial and natural sweeteners in reducing the consumption of table sugar: a narrative review. Clin Nutr ESPEN 2017;18:1-8.
  88. Sun Y, Hayakawa S, Izumori K. Modification of ovalbumin with a rare ketohexose through the Maillard reaction: effect on protein structure and gel properties. J Agric Food Chem 2004;52:1293-9.
  89. Sun Y, Hayakawa S, Chuamanochan M, Fujimoto M, Innun A, Izumori K. Antioxidant effects of Maillard reaction products obtained from ovalbumin and different D-aldohexoses. Biosci Biotechnol Biochem 2006;70:598-605.
  90. Matsuo T, Suzuki H, Hashiguchi M, Izumori K. D-psicose is a rare sugar that provides no energy to growing rats. J Nutr Sci Vitaminol (Tokyo) 2002;48:77-80.
  91. Han Y, Han HJ, Kim AH, Choi JY, Cho SJ, Park YB, Jung UJ, Choi MS. d-Allulose supplementation normalized the body weight and fat-pad mass in diet-induced obese mice via the regulation of lipid metabolism under isocaloric fed condition. Mol Nutr Food Res 2016;60:1695-706.
  92. Hossain A, Yamaguchi F, Matsunaga T, Hirata Y, Kamitori K, Dong Y, Sui L, Tsukamoto I, Ueno M, Tokuda M. Rare sugar D-psicose protects pancreas β-islets and thus improves insulin resistance in OLETF rats. Biochem Biophys Res Commun 2012;425:717-23.
  93. Matsuo T, Izumori K. Effects of dietary D-psicose on diurnal variation in plasma glucose and insulin concentrations of rats. Biosci Biotechnol Biochem 2006;70:2081-5.
  94. Iida T, Kishimoto Y, Yoshikawa Y, Hayashi N, Okuma K, Tohi M, Yagi K, Matsuo T, Izumori K. Acute D-psicose administration decreases the glycemic responses to an oral maltodextrin tolerance test in normal adults. J Nutr Sci Vitaminol (Tokyo) 2008;54:511-4.
  95. Ferreira SS. Biotechnological processes for D-tagatose production [Master's thesis]. Braga: Universidade do Minho; 2019. 
  96. Shintani T, Yamada T, Hayashi N, Iida T, Nagata Y, Ozaki N, Toyoda Y. Rare sugar syrup containing D-allulose but not high-fructose corn syrup maintains glucose tolerance and insulin sensitivity partly via hepatic glucokinase translocation in Wistar rats. J Agric Food Chem 2017;65:2888-94.
  97. Vazquez MJ, Alonso JL, Dominguez H, Parajo JC; M.J. Va'zquez JLA. Xylooligosaccharides: manufacture and applications. Trends Food Sci Technol 2000;11:387-93.
  98. Lim SM, Kim E, Shin JH, Seok PR, Jung S, Yoo SH, Kim Y. Xylobiose prevents high-fat diet induced mice obesity by suppressing mesenteric fat deposition and metabolic dysregulation. Molecules 2018;23:705.
  99. Lim E, Lim JY, Kim E, Kim YS, Shin JH, Seok PR, Jung S, Yoo SH, Kim Y. Xylobiose, an alternative sweetener, ameliorates diabetes-related metabolic changes by regulating hepatic lipogenesis and miR-122a/33a in db/db mice. Nutrients 2016;8:791.
  100. Pikis A, Immel S, Robrish SA, Thompson J. Metabolism of sucrose and its five isomers by Fusobacterium mortiferum. Microbiology 2002;148:843-52.
  101. Jonker D, Lina BA, Kozianowski G. 13-Week oral toxicity study with isomaltulose (palatinose) in rats. Food Chem Toxicol 2002;40:1383-9.
  102. Lina BA, Jonker D, Kozianowski G. Isomaltulose (palatinose): a review of biological and toxicological studies. Food Chem Toxicol 2002;40:1375-81.
  103. University of Sydney. Glycaemic index research service 2020 [Internet]. Available from www.glycemicindex.com [cited 2023 April 13]. 
  104. Maeda A, Miyagawa J, Miuchi M, Nagai E, Konishi K, Matsuo T, Tokuda M, Kusunoki Y, Ochi H, Murai K, Katsuno T, Hamaguchi T, Harano Y, Namba M. Effects of the naturally-occurring disaccharides, palatinose and sucrose, on incretin secretion in healthy non-obese subjects. J Diabetes Investig 2013;4:281-6.
  105. Ang M, Linn T. Comparison of the effects of slowly and rapidly absorbed carbohydrates on postprandial glucose metabolism in type 2 diabetes mellitus patients: a randomized trial. Am J Clin Nutr 2014;100:1059-68.
  106. Konig D, Theis S, Kozianowski G, Berg A. Postprandial substrate use in overweight subjects with the metabolic syndrome after isomaltulose (Palatinose™) ingestion. Nutrition 2012;28:651-6.
  107. Nakamura K, Ogawa S, Dairiki K, Fukatsu K, Sasaki H, Kaneko T, Yamaji T. A new immune-modulating diet enriched with whey-hydrolyzed peptide, fermented milk, and isomaltulose attenuates gut ischemia-reperfusion injury in mice. Clin Nutr 2011;30:513-6.
  108. Elias PS, Benecke H, Schwengers D. Safety evaluation studies of leucrose. J Am Coll Toxicol 1996;15:205-18.
  109. Stodola FH, Koepsell HJ, Sharpe ES. A new disaccharide produced by Leuconostoc mesenteroides. J Am Chem Soc 1952;74:3202-3.
  110. Ziesenitz SC, Siebert G, Schwengers D, Lemmes R. Nutritional assessment in humans and rats of leucrose [D-glucopyranosyl-alpha(1----5)-D-fructopyranose] as a sugar substitute. J Nutr 1989;119:971-8.
  111. Lee J, Kim E, Kim Y, Yoo SH. Leucrose, a sucrose isomer, suppresses hepatic fat accumulation by regulating hepatic lipogenesis and fat oxidation in high-fat diet-induced obese mice. J Cancer Prev 2018;23:99-106.
  112. Lee D, Lee J, Hong MG, Lee BH, Kim YM, Chang PS, Kim Y, Yoo SH. Optimization of leucrose production by dextransucrase from Streptococcus mutans and its application as an adipogenesis regulator. J Funct Foods 2017;39:238-44.
  113. Ruiz-Aceituno L, Hernandez-Hernandez O, Kolida S, Moreno FJ, Methven L. Sweetness and sensory properties of commercial and novel oligosaccharides of prebiotic potential. Lebensm Wiss Technol 2018;97:476-82.
  114. Chung JY, Lee J, Lee D, Kim E, Shin JH, Seok PR, Yoo SH, Kim Y. Acute and 13-week subchronic toxicological evaluations of turanose in mice. Nutr Res Pract 2017;11:452-60.
  115. Thompson J, Robrish SA, Pikis A, Brust A, Lichtenthaler FW. Phosphorylation and metabolism of sucrose and its five linkage-isomeric alpha-D-glucosyl-D-fructoses by Klebsiella pneumoniae. Carbohydr Res 2001;331:149-61.
  116. Dahlqvist A, Lindberg E, Kull G, Lindberg B. Characterization of hog intestinal invertase as a glucosido-invertase. Acta Chem Scand 1960;14:63-71.
  117. Park MO, Lee BH, Lim E, Lim JY, Kim Y, Park CS, Lee HG, Kang HK, Yoo SH. Enzymatic process for high-yield turanose production and its potential property as an adipogenesis regulator. J Agric Food Chem 2016;64:4758-64.
  118. Chung JY, Kim YS, Kim Y, Yoo SH. Regulation of inflammation by sucrose isomer, turanose, in Raw 264.7 cells. J Cancer Prev 2017;22:195-201.