DOI QR코드

DOI QR Code

Advanced T and Natural Killer Cell Therapy for Glioblastoma

  • Wan-Soo Yoon (Department of Neurosurgery, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Dong-Sup Chung (Department of Neurosurgery, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea)
  • Received : 2022.12.05
  • Accepted : 2022.12.27
  • Published : 2023.07.01

Abstract

Although immunotherapy has been broadly successful in the treatment of hematologic malignancies and a subset of solid tumors, its clinical outcomes for glioblastoma are still inadequate. The results could be due to neuroanatomical structures such as the blood-brain-barrier, antigenic heterogeneity, and the highly immunosuppressive microenvironment of glioblastomas. The antitumor efficacy of endogenously activated effector cells induced by peptide or dendritic cell vaccines in particular has been insufficient to control tumors. Effector cells, such as T cells and natural killer (NK) cells can be expanded rapidly ex vivo and transferred to patients. The identification of neoantigens derived from tumor-specific mutations is expanding the list of tumor-specific antigens for glioblastoma. Moreover, recent advances in gene-editing technologies enable the effector cells to not only have multiple biological functionalities, such as cytokine production, multiple antigen recognition, and increased cell trafficking, but also relieve the immunosuppressive nature of the glioblastoma microenvironment by blocking immune inhibitory molecules, which together improve their cytotoxicity, persistence, and safety. Allogeneic chimeric antigen receptor (CAR) T cells edited to reduce graft-versus-host disease and allorejection, or induced pluripotent stem cell-derived NK cells expressing CARs that use NK-specific signaling domain can be a good candidate for off-the-shelf products of glioblastoma immunotherapy. We here discuss current progress and future directions for T cell and NK cell therapy in glioblastoma.

Keywords

References

  1. Ahmadzadeh M, Johnson LA, Heemskerk B, Wunderlich JR, Dudley ME, White DE, et al. : Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood 114 : 1537-1544, 2019
  2. Ahmed N, Brawley V, Hegde M, Bielamowicz K, Kalra M, Landi D, et al. : HER2-specific chimeric antigen receptor-modified virus-specific T cells for progressive glioblastoma: a phase 1 dose-escalation trial. JAMA Oncol 3 : 1094-1101, 2017
  3. Ajina A, Maher J : Prospects for combined use of oncolytic viruses and CAR T-cells. J Immunother Cancer 5 : 90, 2017
  4. Alkins R, Burgess A, Kerbel R, Wels WS, Hynynen K : Early treatment of HER2-amplified brain tumors with targeted NK-92 cells and focused ultrasound improves survival. Neuro Oncol 18 : 974-981, 2016 https://doi.org/10.1093/neuonc/nov318
  5. Anderson AC, Joller N, Kuchroo VK : Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialized functions in immune regulation. Immunity 44 : 989-1004, 2016 https://doi.org/10.1016/j.immuni.2016.05.001
  6. Avril T, Vauleon E, Hamlat A, Saikali S, Etcheverry A, Delmas C, et al. : Human glioblastoma stem-like cells are more sensitive to allogeneic NK and T cell-mediated killing compared with serum-cultured glioblastoma cells. Brain Pathol 22 : 159-174, 2012 https://doi.org/10.1111/j.1750-3639.2011.00515.x
  7. Baba J, Watanabe S, Saida Y, Tanaka T, Miyabayashi T, Koshio J, et al. : Depletion of radio-resistant regulatory T cells enhances antitumor immunity during recovery from lymphopenia. Blood 120 : 2417-2427, 2012
  8. Balch CM, Riley LB, Bae YJ, Salmeron MA, Platsoucas CD, von Eschenbach A, et al. : Patterns of human tumor-infiltrating lymphocytes in 120 human cancers. Arch Surg 125 : 200-205, 1990 https://doi.org/10.1001/archsurg.1990.01410140078012
  9. Barba D, Saris SC, Holder C, Rosenberg SA, Oldfield EH : Intratumoral LAK cell and interleukin-2 therapy of human gliomas. J Neurosurg 70 : 175-182, 1989 https://doi.org/10.3171/jns.1989.70.2.0175
  10. Bargou R, Leo E, Zugmaier G, Klinger M, Goebeler M, Knop S, et al. : Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science 321 : 974-977, 2008 https://doi.org/10.1126/science.1158545
  11. Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL, et al. : Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285 : 727-729, 1999 https://doi.org/10.1126/science.285.5428.727
  12. Bielamowicz K, Fousek K, Byrd TT, Samaha H, Mukherjee M, Aware N, et al. : Trivalent CAR T cells overcome interpatient antigenic variability in glioblastoma. Neuro Oncol 20 : 506-518, 2018 https://doi.org/10.1093/neuonc/nox182
  13. Billadeau DD, Upshaw JL, Schoon RA, Dick CJ, Leibson PJ : NKG2D-DAP10 triggers human NK cell-mediated killing via a Syk-independent regulatory pathway. Nat Immunol 4 : 557-564, 2003 https://doi.org/10.1038/ni929
  14. Bougatef F, Quemener C, Kellouche S, Naimi B, Podgorniak MP, Millot G, et al. : EMMPRIN promotes angiogenesis through hypoxia-inducible factor-2alpha-mediated regulation of soluble VEGF isoforms and their receptor VEGFR-2. Blood 114 : 5547-5556, 2009 https://doi.org/10.1182/blood-2009-04-217380
  15. Brantley-Sieders DM, Fang WB, Hwang Y, Hicks D, Chen J : Ephrin-A1 facilitates mammary tumor metastasis through an angiogenesis-dependent mechanism mediated by EphA receptor and vascular endothelial growth factor in mice. Cancer Res 66 : 10315-10324, 2006 https://doi.org/10.1158/0008-5472.CAN-06-1560
  16. Brocker T, Karjalainen K : Signals through T cell receptor-zeta chain alone are insufficient to prime resting T lymphocytes. J Exp Med 181 : 1653-1659, 1995 https://doi.org/10.1084/jem.181.5.1653
  17. Brown CE, Alizadeh D, Starr R, Weng L, Wagner JR, Naranjo A, et al. : Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med 375 : 2561-2569, 2016 https://doi.org/10.1056/NEJMoa1610497
  18. Brown CE, Badie B, Barish ME, Weng L, Ostberg JR, Chang WC, et al. : Bioactivity and safety of IL13Rα2-redirected chimeric antigen receptor CD8+ T cells in patients with recurrent glioblastoma. Clin Cancer Res 21 : 4062-4072,
  19. Brown CE, Rodriguez A, Palmer J, Ostberg JR, Naranjo A, Wagner JR, et al. : Off-the-shelf, steroid-resistant, IL13Rα2-specific CAR T cells for treatment of glioblastoma. Neuro Oncol 24 : 1318-1330, 2022 https://doi.org/10.1093/neuonc/noac024
  20. Brown CE, Warden CD, Starr R, Deng X, Badie B, Yuan YC, et al. : Glioma IL13Rα2 is associated with mesenchymal signature gene expression and poor patient prognosis. PLoS One 8 : e77769, 2013
  21. Buchroithner J, Erhart F, Pichler J, Widhalm G, Preusser M, Stockhammer G, et al. : Audencel immunotherapy based on dendritic cells has no effect on overall and progression-free survival in newly diagnosed glioblastoma: a phase II randomized trial. Cancers (Basel) 10 : 372, 2018
  22. Carreno BM, Magrini V, Becker-Hapak M, Kaabinejadian S, Hundal J, Petti AA, et al. : A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science 348 : 803-808, 2015 https://doi.org/10.1126/science.aaa3828
  23. Champiat S, Dercle L, Ammari S, Massard C, Hollebecque A, PostelVinay S, et al. : Hyperprogressive disease is a new pattern of progression in cancer patients treated by anti-PD-1/PD-L1. Clin Cancer Res 23 : 1920-1928, 2017 https://doi.org/10.1158/1078-0432.CCR-16-1741
  24. Chang ZL, Hou AJ, Chen YY : Engineering primary T cells with chimeric antigen receptors for rewired responses to soluble ligands. Nat Protoc 15 : 1507-1524, 2020 https://doi.org/10.1038/s41596-020-0294-8
  25. Chmielewski M, Abken H : TRUCKs: the fourth generation of CARs. Expert Opin Biol Ther 15 : 1145-1154,
  26. Cho BK, Rao VP, Ge Q, Eisen HN, Chen J : Homeostasis-stimulated proliferation drives naive T cells to differentiate directly into memory T cells. J Exp Med 192 : 549-556, 2000 https://doi.org/10.1084/jem.192.4.549
  27. Cho DY, Yang WK, Lee HC, Hsu DM, Lin HL, Lin SZ, et al. : Adjuvant immunotherapy with whole-cell lysate dendritic cells vaccine for glioblastoma multiforme: a phase II clinical trial. World Neurosurg 77 : 736-744, 2012 https://doi.org/10.1016/j.wneu.2011.08.020
  28. Choi BD, Yu X, Castano AP, Bouffard AA, Schmidts A, Larson RC, et al. : CAR-T cells secreting BiTEs circumvent antigen escape without detectable toxicity. Nat Biotechnol 37 : 1049-1058, 2019 https://doi.org/10.1038/s41587-019-0192-1
  29. Choi BD, Yu X, Castano AP, Darr H, Henderson DB, Bouffard AA, et al. : CRISPR-Cas9 disruption of PD-1 enhances activity of universal EGFRvIII CAR T cells in a preclinical model of human glioblastoma. J Immunother Cancer 7 : 304, 2019
  30. Chow KK, Naik S, Kakarla S, Brawley VS, Shaffer DR, Yi Z, et al. : T cells redirected to EphA2 for the immunotherapy of glioblastoma. Mol Ther 21 : 629-637, 2013 https://doi.org/10.1038/mt.2012.210
  31. Chung DS, Shin HJ, Hong YK : A new hope in immunotherapy for malignant gliomas: adoptive T cell transfer therapy. J Immunol Res 2014 : 326545, 2014
  32. Cinatl J, Scholz M, Kotchetkov R, Vogel JU, Doerr HW : Molecular mechanisms of the modulatory effects of HCMV infection in tumor cell biology. Trends Mol Med 10 : 19-23, 2004 https://doi.org/10.1016/j.molmed.2003.11.002
  33. Cobbs CS, Harkins L, Samanta M, Gillespie GY, Bharara S, King PH, et al. : Human cytomegalovirus infection and expression in human malignant glioma. Cancer Res 62 : 3347-3350, 2002
  34. Collins M, Ling V, Carreno BM : The B7 family of immune-regulatory ligands. Genome Biol 6 : 223, 2005
  35. Crough T, Beagley L, Smith C, Jones L, Walker DG, Khanna R : Ex vivo functional analysis, expansion and adoptive transfer of cytomegalovirus-specific T-cells in patients with glioblastoma multiforme. Immunol Cell Biol 90 : 872-880, 2012 https://doi.org/10.1038/icb.2012.19
  36. Cui J, Wang H, Medina R, Zhang Q, Xu C, Indig IH, et al. : Inhibition of PP2A with LB-100 enhances efficacy of CAR-T cell therapy against glioblastoma. Cancers (Basel) 12 : 139, 2020
  37. Curtsinger JM, Valenzuela JO, Agarwal P, Lins D, Mescher MF : Type I IFNs provide a third signal to CD8 T cells to stimulate clonal expansion and differentiation. J Immunol 174 : 4465-4469, 2005 https://doi.org/10.4049/jimmunol.174.8.4465
  38. Dardevet L, Rani D, Aziz TA, Bazin I, Sabatier JM, Fadl M, et al. : Chlorotoxin: a helpful natural scorpion peptide to diagnose glioma and fight tumor invasion. Toxins (Basel) 7 : 1079-1101,
  39. DeBin JA, Maggio JE, Strichartz GR : Purification and characterization of chlorotoxin, a chloride channel ligand from the venom of the scorpion. Am J physiol 264(2 Pt 1) : C361-C369, 1993 https://doi.org/10.1152/ajpcell.1993.264.2.C361
  40. Debinski W, Gibo DM, Hulet SW, Connor JR, Gillespie GY : Receptor for interleukin 13 is a marker and therapeutic target for human high-grade gliomas. Clin Cancer Res 5 : 985-990, 1999
  41. Demaria S, Formenti SC : Sensors of ionizing radiation effects on the immunological microenvironment of cancer. Int J Radiat Biol 83 : 819-825, 2007 https://doi.org/10.1080/09553000701481816
  42. DeSelm C, Palomba ML, Yahalom J, Hamieh M, Eyquem J, Rajasekhar VK, et al. : Low-dose radiation conditioning enables CAR T cells to mitigate antigen escape. Mol Ther 26 : 2542-2552, 2018 https://doi.org/10.1016/j.ymthe.2018.09.008
  43. Deshane J, Garner CC, Sontheimer H : Chlorotoxin inhibits glioma cell invasion via matrix metalloproteinase-2. J Biol Chem 278 : 4135-4144, 2003 https://doi.org/10.1074/jbc.M205662200
  44. Ding Z, Li Q, Zhang R, Xie L, Shu Y, Gao S, et al. : Personalized neoantigen pulsed dendritic cell vaccine for advanced lung cancer. Signal Transduct Target Ther 6 : 26, 2021
  45. Dobrzanski P, Hunter K, Jones-Bolin S, Chang H, Robinson C, Pritchard S, et al. : Antiangiogenic and antitumor efficacy of EphA2 receptor antagonist. Cancer Res 64 : 910-919, 2004 https://doi.org/10.1158/0008-5472.CAN-3430-2
  46. Doronin II, Vishnyakova PA, Kholodenko IV, Ponomarev ED, Ryazantsev DY, Molotkovskaya IM, et al. : Ganglioside GD2 in reception and transduction of cell death signal in tumor cells. BMC Cancer 14 : 295, 2014
  47. Du H, Hirabayashi K, Ahn S, Kren NP, Montgomery SA, Wang X, et al. : Antitumor responses in the absence of toxicity in solid tumors by targeting B7-H3 via chimeric antigen receptor T cells. Cancer Cell 35 : 221-237.e8, 2019 https://doi.org/10.1016/j.ccell.2019.01.002
  48. Dustin ML, Shaw AS : Costimulation: building an immunological synapse. Science 283 : 649-650, 1999 https://doi.org/10.1126/science.283.5402.649
  49. Eguizabal C, Zenarruzabeitia O, Monge J, Santos S, Vesga MA, Maruri N, et al. : Natural killer cells for cancer immunotherapy: pluripotent stem cells-derived NK cells as an immunotherapeutic perspective. Front Immunol 5 : 439, 2014
  50. Eiraku Y, Terunuma H, Yagi M, Deng X, Nicol AJ, Nieda M : Dendritic cells cross-talk with tumour antigen-specific CD8+ T cells, Vγ9γδT cells and Vα24NKT cells in patients with glioblastoma multiforme and in healthy donors. Clin Exp Immunol 194 : 54-66, 2018 https://doi.org/10.1111/cei.13185
  51. Eshhar Z, Waks T, Gross G, Schindler DG : Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci U S A 90 : 720-724, 1993 https://doi.org/10.1073/pnas.90.2.720
  52. Fadul CE, Fisher JL, Gui J, Hampton TH, Cote AL, Ernstoff MS : Immune modulation effects of concomitant temozolomide and radiation therapy on peripheral blood mononuclear cells in patients with glioblastoma multiforme. Neuro Oncol 13 : 393-400, 2011 https://doi.org/10.1093/neuonc/noq204
  53. Fan H, Yi W, Wang C, Wang J : The clinicopathological significance and prognostic value of EMMPRIN overexpression in cancers: evidence from 39 cohort studies. Oncotarget 8 : 82643-82660, 2017 https://doi.org/10.18632/oncotarget.19740
  54. Fecci PE, Sampson JH : The current state of immunotherapy for gliomas: an eye toward the future. J Neurosurg 131 : 657-666, 2019 https://doi.org/10.3171/2019.5.JNS181762
  55. Fluh C, Chitadze G, Adamski V, Hattermann K, Synowitz M, Kabelitz D, et al : NKG2D ligands in glioma stem-like cells: expression in situ and in vitro. Histochem Cell Biol 149 : 219-233, 2018 https://doi.org/10.1007/s00418-018-1633-5
  56. Formenti SC, Demaria S : Combining radiotherapy and cancer immunotherapy: a paradigm shift. J Natl Cancer Inst 105 : 256-265, 2013 https://doi.org/10.1093/jnci/djs629
  57. Fujii R, Jochems C, Tritsch SR, Wong HC, Schlom J, Hodge JW : An IL-15 superagonist/IL-15rα fusion complex protects and rescues NK cell-cytotoxic function from TGF-β1-mediated immunosuppression. Cancer Immunol Immunother 67 : 675-689, 2018 https://doi.org/10.1007/s00262-018-2121-4
  58. Gargett T, Ebert LM, Truong NTH, Kollis PM, Sedivakova K, Yu W, et al. : GD2-targeting CAR-T cells enhanced by transgenic IL-15 expression are an effective and clinically feasible therapy for glioblastoma. J Immunother Cancer 10 : e005187, 2022
  59. Gattinoni L, Lugli E, Ji Y, Pos Z, Paulos CM, Quigley MF, et al. : A human memory T cell subset with stem cell-like properties. Nat Med 17 : 1290-1297, 2011 https://doi.org/10.1038/nm.2446
  60. Geller MA, Miller JS : Use of allogeneic NK cells for cancer immunotherapy. Immunotherapy 3 : 1445-1459, 2011 https://doi.org/10.2217/imt.11.131
  61. Genssler S, Burger MC, Zhang C, Oelsner S, Mildenberger I, Wagner M, et al. : Dual targeting of glioblastoma with chimeric antigen receptor-engineered natural killer cells overcomes heterogeneity of target antigen expression and enhances antitumor activity and survival. Oncoimmunology 5 : e1119354, 2016
  62. Gilfillan S, Ho EL, Cella M, Yokoyama WM, Colonna M : NKG2D recruits two distinct adapters to trigger NK cell activation and costimulation. Nat Immunol 3 : 1150-1155, 2002 https://doi.org/10.1038/ni857
  63. Giordano-Attianese G, Gainza P, Gray-Gaillard E, Cribioli E, Shui S, Kim S, et al. : A computationally designed chimeric antigen receptor provides a small-molecule safety switch for T-cell therapy. Nat Biotechnol 38 : 426-432, 2020 https://doi.org/10.1038/s41587-019-0403-9
  64. Goff SL, Morgan RA, Yang JC, Sherry RM, Robbins PF, Restifo NP, et al. : Pilot trial of adoptive transfer of chimeric antigen receptor-transduced T cells targeting EGFRvIII in patients with glioblastoma. J Immunother 42 : 126-135, 2019 https://doi.org/10.1097/CJI.0000000000000260
  65. Golinelli G, Grisendi G, Prapa M, Bestagno M, Spano C, Rossignoli F, et al. : Targeting GD2-positive glioblastoma by chimeric antigen receptor empowered mesenchymal progenitors. Cancer Gene Ther 27 : 558-570, 2020 https://doi.org/10.1038/s41417-018-0062-x
  66. Grass GD, Toole BP : How, with whom and when: an overview of CD147-mediated regulatory networks influencing matrix metalloproteinase activity. Biosci Rep 36 : e00283,
  67. Grimm EA, Robb RJ, Roth JA, Neckers LM, Lachman LB, Wilson DJ, et al. : Lymphokine-activated killer cell phenomenon. III. Evidence that IL-2 is sufficient for direct activation of peripheral blood lymphocytes into lymphokine-activated killer cells. J Exp Med 158 : 1356-1361, 1983 https://doi.org/10.1084/jem.158.4.1356
  68. Han J, Chu J, Keung Chan W, Zhang J, Wang Y, Cohen JB, et al. : CAR-engineered NK cells targeting wild-type EGFR and EGFRvIII enhance killing of glioblastoma and patient-derived glioblastoma stem cells. Sci Rep 5 : 11483,
  69. Haspels HN, Rahman MA, Joseph JV, Gras Navarro A, Chekenya M : Glioblastoma stem-like cells are more susceptible than differentiated cells to natural killer cell lysis mediated through killer immunoglobulin-like receptors-human leukocyte antigen ligand mismatch and activation receptor-ligand interactions. Front Immunol 9 : 1345, 2018
  70. Hayes RL, Koslow M, Hiesiger EM, Hymes KB, Hochster HS, Moore EJ, et al. : Improved long term survival after intracavitary interleukin-2 and lymphokine-activated killer cells for adults with recurrent malignant glioma. Cancer 76 : 840-852, 1995 https://doi.org/10.1002/1097-0142(19950901)76:5<840::AID-CNCR2820760519>3.0.CO;2-R
  71. Hegde M, Mukherjee M, Grada Z, Pignata A, Landi D, Navai SA, et al. : Tandem CAR T cells targeting HER2 and IL13Rα2 mitigate tumor antigen escape. J Clin Invest 126 : 3036-3052, 2016 https://doi.org/10.1172/JCI83416
  72. Hermanson DL, Kaufman DS : Utilizing chimeric antigen receptors to direct natural killer cell activity. Front Immunol 6 : 195,
  73. Hombach AA, Chmielewski M, Rappl G, Abken H : Adoptive immunotherapy with redirected T cells produces CCR7- cells that are trapped in the periphery and benefit from combined CD28-OX40 costimulation. Hum Gene Ther 24 : 259-269, 2013 https://doi.org/10.1089/hum.2012.247
  74. Huang J, Zheng M, Zhang Z, Tang X, Chen Y, Peng A, et al. : Interleukin-7-loaded oncolytic adenovirus improves CAR-T cell therapy for glioblastoma. Cancer Immunol Immunother 70 : 2453-2465, 2021 https://doi.org/10.1007/s00262-021-02856-0
  75. Huang RS, Shih HA, Lai MC, Chang YJ, Lin S : Enhanced NK-92 cytotoxicity by CRISPR genome engineering using Cas9 ribonucleoproteins. Front Immunol 11 : 1008, 2020
  76. Im SJ, Hashimoto M, Gerner MY, Lee J, Kissick HT, Burger MC, et al. : Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature 537 : 417-421, 2016 https://doi.org/10.1038/nature19330
  77. Ishikawa E, Tsuboi K, Saijo K, Harada H, Takano S, Nose T, et al. : Autologous natural killer cell therapy for human recurrent malignant glioma. Anticancer Res 24 : 1861-1871, 2004
  78. Jackaman C, Majewski D, Fox SA, Nowak AK, Nelson DJ : Chemotherapy broadens the range of tumor antigens seen by cytotoxic CD8(+) T cells in vivo. Cancer Immunol Immunother 61 : 2343-2356, 2012 https://doi.org/10.1007/s00262-012-1307-4
  79. Jin L, Ge H, Long Y, Yang C, Chang YE, Mu L, et al. : CD70, a novel target of CAR T-cell therapy for gliomas. Neuro Oncol 20 : 55-65, 2018 https://doi.org/10.1093/neuonc/nox116
  80. Jin L, Tao H, Karachi A, Long Y, Hou AY, Na M, et al. : CXCR1- or CXCR2-modified CAR T cells co-opt IL-8 for maximal antitumor efficacy in solid tumors. Nat Commun 10 : 4016, 2019
  81. Johnsen JI, Baryawno N, Soderberg-Naucler C : Is human cytomegalovirus a target in cancer therapy? Oncotarget 2 : 1329-1338, 2011 https://doi.org/10.18632/oncotarget.383
  82. Johnson LA, Morgan RA, Dudley ME, Cassard L, Yang JC, Hughes MS, et al. : Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 114 : 535-546, 2009
  83. Juillerat A, Tkach D, Busser BW, Temburni S, Valton J, Duclert A, et al. : Modulation of chimeric antigen receptor surface expression by a small molecule switch. BMC Biotechnol 19 : 44, 2019
  84. Kagoya Y, Tanaka S, Guo T, Anczurowski M, Wang CH, Saso K, et al. : A novel chimeric antigen receptor containing a JAK-STAT signaling domain mediates superior antitumor effects. Nat Med 24 : 352-359, 2018 https://doi.org/10.1038/nm.4478
  85. Karagiannis P, Kim SI : iPSC-derived natural killer cells for cancer immunotherapy. Mol Cells 44 : 541-548, 2021 https://doi.org/10.14348/molcells.2021.0078
  86. Kaufman HL, Kohlhapp FJ, Zloza A : Oncolytic viruses: a new class of immunotherapy drugs. Nat Rev Drug Discov 14 : 642-662,
  87. Kawakami M, Kawakami K, Takahashi S, Abe M, Puri RK : Analysis of interleukin-13 receptor alpha2 expression in human pediatric brain tumors. Cancer 101 : 1036-1042, 2004 https://doi.org/10.1002/cncr.20470
  88. Kawalekar OU, O'Connor RS, Fraietta JA, Guo L, McGettigan SE, Posey AD Jr, et al. : Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity 44 : 380-390, 2016 https://doi.org/10.1016/j.immuni.2016.01.021
  89. Keskin DB, Anandappa AJ, Sun J, Tirosh I, Mathewson ND, Li S, et al. : Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature 565 : 234-239, 2019 https://doi.org/10.1038/s41586-018-0792-9
  90. Kim CG, Kim KH, Pyo KH, Xin CF, Hong MH, Ahn BC, et al. : Hyperprogressive disease during PD-1/PD-L1 blockade in patients with non-small-cell lung cancer. Ann Oncol 30 : 1104-1113, 2019 https://doi.org/10.1093/annonc/mdz123
  91. Kim N, Kim HS : Targeting checkpoint receptors and molecules for therapeutic modulation of natural killer cells. Front Immunol 9 : 2041, 2018
  92. Klebanoff CA, Finkelstein SE, Surman DR, Lichtman MK, Gattinoni L, Theoret MR, et al. : IL-15 enhances the in vivo antitumor activity of tumor-reactive CD8+ T cells. Proc Natl Acad Sci U S A 101 : 1969-1974, 2004 https://doi.org/10.1073/pnas.0307298101
  93. Klingemann H, Boissel L, Toneguzzo F : Natural killer cells for immunotherapy - advantages of the NK-92 cell line over blood NK cells. Front Immunol 7 : 91, 2016
  94. Klinger M, Benjamin J, Kischel R, Stienen S, Zugmaier G : Harnessing T cells to fight cancer with BiTE® antibody constructs--past developments and future directions. Immunol Rev 270 : 193-208, 2016 https://doi.org/10.1111/imr.12393
  95. Knorr DA, Ni Z, Hermanson D, Hexum MK, Bendzick L, Cooper LJ, et al. : Clinical-scale derivation of natural killer cells from human pluripotent stem cells for cancer therapy. Stem Cells Transl Med 2 : 274-283, 2013 https://doi.org/10.5966/sctm.2012-0084
  96. Koike N, Pilon-Thomas S, Mule JJ : Nonmyeloablative chemotherapy followed by T-cell adoptive transfer and dendritic cell-based vaccination results in rejection of established melanoma. J Immunother 31 : 402-412, 2008 https://doi.org/10.1097/CJI.0b013e31816cabbb
  97. Koka V, Potti A, Forseen SE, Pervez H, Fraiman GN, Koch M, et al. : Role of Her-2/neu overexpression and clinical determinants of early mortality in glioblastoma multiforme. Am J Clin Oncol 26 : 332-335, 2003
  98. Kowolik CM, Topp MS, Gonzalez S, Pfeiffer T, Olivares S, Gonzalez N, et al. : CD28 costimulation provided through a CD19-specific chimeric antigen receptor enhances in vivo persistence and antitumor efficacy of adoptively transferred T cells. Cancer Res 66 : 10995-11004, 2006 https://doi.org/10.1158/0008-5472.CAN-06-0160
  99. Krenciute G, Prinzing BL, Yi Z, Wu MF, Liu H, Dotti G, et al. : Transgenic expression of IL15 improves antiglioma activity of IL13Rα2-CAR T cells but results in antigen loss variants. Cancer Immunol Res 5 : 571-581, 2017 https://doi.org/10.1158/2326-6066.CIR-16-0376
  100. Kumar S : Natural killer cell cytotoxicity and its regulation by inhibitory receptors. Immunology 154 : 383-393, 2018 https://doi.org/10.1111/imm.12921
  101. Kwon HJ, Kim N, Kim HS : Molecular checkpoints controlling natural killer cell activation and their modulation for cancer immunotherapy. Exp Mol Med 49 : e311, 2017
  102. Landras A, Reger de Moura C, Jouenne F, Lebbe C, Menashi S, Mourah S : CD147 is a promising target of tumor progression and a prognostic biomarker. Cancers (Basel) 11 : 1803, 2019
  103. Lanier LL : Up on the tightrope: natural killer cell activation and inhibition. Nat Immunol 9 : 495-502, 2008 https://doi.org/10.1038/ni1581
  104. Lazarova M, Steinle A : Impairment of NKG2D-mediated tumor immunity by TGF-β. Front Immunol 10 : 2689, 2019
  105. Leibson PJ : Signal transduction during natural killer cell activation: inside the mind of a killer. Immunity 6 : 655-661, 1997 https://doi.org/10.1016/S1074-7613(00)80441-0
  106. Li G, Zhang Z, Cai L, Tang X, Huang J, Yu L, et al. : Fn14-targeted BiTE and CAR-T cells demonstrate potent preclinical activity against glioblastoma. Oncoimmunology 10 : 1983306, 2021
  107. Li H, Ding J, Lu M, Liu H, Miao Y, Li L, et al. : CAIX-specific CAR-T cells and sunitinib show synergistic effects against metastatic renal cancer models. J Immunother 43 : 16-28, 2020 https://doi.org/10.1097/CJI.0000000000000301
  108. Li L, Goedegebuure P, Mardis ER, Ellis MJ, Zhang X, Herndon JM, et al. : Cancer genome sequencing and its implications for personalized cancer vaccines. Cancers (Basel) 3 : 4191-4211, 2011 https://doi.org/10.3390/cancers3044191
  109. Li S, Siriwon N, Zhang X, Yang S, Jin T, He F, et al. : Enhanced cancer immunotherapy by chimeric antigen receptor-modified T cells engineered to secrete checkpoint inhibitors. Clin Cancer Res 23 : 6982-6992, 2017 https://doi.org/10.1158/1078-0432.CCR-17-0867
  110. Li T, Zhang Q, Jiang Y, Yu J, Hu Y, Mou T, et al. : Gastric cancer cells inhibit natural killer cell proliferation and induce apoptosis via prostaglandin E2. Oncoimmunology 5 : e1069936, 2016
  111. Li Y, Hermanson DL, Moriarity BS, Kaufman DS : Human iPSC-derived natural killer cells engineered with chimeric antigen receptors enhance anti-tumor activity. Cell Stem Cell 23 : 181-192.e5, 2018 https://doi.org/10.1016/j.stem.2018.06.002
  112. Liau LM, Ashkan K, Tran DD, Campian JL, Trusheim JE, Cobbs CS, et al. : First results on survival from a large phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma. J Transl Med 16 : 142, 2018
  113. Lim J, Park Y, Ahn JW, Sim J, Kang SJ, Hwang S, et al. : Autologous adoptive immune-cell therapy elicited a durable response with enhanced immune reaction signatures in patients with recurrent glioblastoma: an open label, phase I/IIa trial. PLoS One 16 : e0247293, 2021
  114. Lin Q, Ba T, Ho J, Chen D, Cheng Y, Wang L, et al. : First-in-human trial of EphA2-redirected CAR T-cells in patients with recurrent glioblastoma: a preliminary report of three cases at the starting dose. Front Oncol 11 : 694941, 2021
  115. Lin Y, Okada H : Cellular immunotherapy for malignant gliomas. Expert Opin Biol Ther 16 : 1265-1275, 2016 https://doi.org/10.1080/14712598.2016.1214266
  116. Liu X, Ranganathan R, Jiang S, Fang C, Sun J, Kim S, et al. : A chimeric switch-receptor targeting PD1 augments the efficacy of second-generation CAR T cells in advanced solid tumors. Cancer Res 76 : 1578-1590, 2016 https://doi.org/10.1158/0008-5472.CAN-15-2524
  117. Lohr J, Ratliff T, Huppertz A, Ge Y, Dictus C, Ahmadi R, et al. : Effector T-cell infiltration positively impacts survival of glioblastoma patients and is impaired by tumor-derived TGF-β. Clin Cancer Res 17 : 4296-4308, 2011 https://doi.org/10.1158/1078-0432.CCR-10-2557
  118. Long EO : Negative signaling by inhibitory receptors: the NK cell paradigm. Immunol Rev 224 : 70-84, 2008 https://doi.org/10.1111/j.1600-065X.2008.00660.x
  119. Long EO, Kim HS, Liu D, Peterson ME, Rajagopalan S : Controlling natural killer cell responses: integration of signals for activation and inhibition. Annu Rev Immunol 31 : 227-258, 2013 https://doi.org/10.1146/annurev-immunol-020711-075005
  120. Longee DC, Wikstrand CJ, Mansson JE, He X, Fuller GN, Bigner SH, et al. : Disialoganglioside GD2 in human neuroectodermal tumor cell lines and gliomas. Acta Neuropathol 82 : 45-54, 1991 https://doi.org/10.1007/BF00310922
  121. Lyons SA, O'Neal J, Sontheimer H : Chlorotoxin, a scorpion-derived peptide, specifically binds to gliomas and tumors of neuroectodermal origin. Glia 39 : 162-173, 2002 https://doi.org/10.1002/glia.10083
  122. Ma R, Lu T, Li Z, Teng KY, Mansour AG, Yu M, et al. : An oncolytic virus expressing IL15/IL15Rα combined with off-the-shelf EGFR-CAR NK cells targets glioblastoma. Cancer Res 81 : 3635-3648, 2021 https://doi.org/10.1158/0008-5472.CAN-21-0035
  123. Ma X, Holt D, Kundu N, Reader J, Goloubeva O, Take Y, et al. : A prostaglandin E (PGE) receptor EP4 antagonist protects natural killer cells from PGE2-mediated immunosuppression and inhibits breast cancer metastasis. Oncoimmunology 2 : e22647, 2013
  124. Majzner RG, Ramakrishna S, Yeom KW, Patel S, Chinnasamy H, Schultz LM, et al. : GD2-CAR T cell therapy for H3K27M-mutated diffuse midline gliomas. Nature 603 : 934-941, 2011
  125. Majzner RG, Theruvath JL, Nellan A, Heitzeneder S, Cui Y, Mount CW, et al. : CAR T cells targeting B7-H3, a pan-cancer antigen, demonstrate potent preclinical activity against pediatric solid tumors and brain tumors. Clin Cancer Res 25 : 2560-2574, 2019 https://doi.org/10.1158/1078-0432.CCR-18-0432
  126. Mamelak AN, Rosenfeld S, Bucholz R, Raubitschek A, Nabors LB, Fiveash JB, et al. : Phase I single-dose study of intracavitary-administered iodine-131-TM-601 in adults with recurrent high-grade glioma. J Clin Oncol 24 : 3644-3650, 2006
  127. Manley TJ, Luy L, Jones T, Boeckh M, Mutimer H, Riddell SR : Immune evasion proteins of human cytomegalovirus do not prevent a diverse CD8+ cytotoxic T-cell response in natural infection. Blood 104 : 1075-1082, 2004 https://doi.org/10.1182/blood-2003-06-1937
  128. Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, et al. : TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554 : 544-548, 2018 https://doi.org/10.1038/nature25501
  129. McFerrin MB, Sontheimer H : A role for ion channels in glioma cell invasion. Neuron Glia Biol 2 : 39-49, 2006 https://doi.org/10.1017/S1740925X06000044
  130. McNerney ME, Lee KM, Kumar V : 2B4 (CD244) is a non-MHC binding receptor with multiple functions on natural killer cells and CD8+ T cells. Mol Immunol 42 : 489-494, 2005 https://doi.org/10.1016/j.molimm.2004.07.032
  131. Meister H, Look T, Roth P, Pascolo S, Sahin U, Lee S, et al. : Multifunctional mRNA-based CAR T cells display promising antitumor activity against glioblastoma. Clin Cancer Res 28 : 4747-4756, 2022 https://doi.org/10.1158/1078-0432.CCR-21-4384
  132. Miao H, Li DQ, Mukherjee A, Guo H, Petty A, Cutter J, et al. : EphA2 mediates ligand-dependent inhibition and ligand-independent promotion of cell migration and invasion via a reciprocal regulatory loop with Akt. Cancer Cell 16 : 9-20, 2009 https://doi.org/10.1016/j.ccr.2009.04.009
  133. Miller JS, Soignier Y, Panoskaltsis-Mortari A, McNearney SA, Yun GH, Fautsch SK, et al. : Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 105 : 3051-3057, 2005 https://doi.org/10.1182/blood-2004-07-2974
  134. Mineo JF, Bordron A, Baroncini M, Maurage CA, Ramirez C, Siminski RM, et al. : Low HER2-expressing glioblastomas are more often secondary to anaplastic transformation of low-grade glioma. J Neurooncol 85 : 281-287, 2007 https://doi.org/10.1007/s11060-007-9424-1
  135. Modak S, Kramer K, Gultekin SH, Guo HF, Cheung NK : Monoclonal antibody 8H9 targets a novel cell surface antigen expressed by a wide spectrum of human solid tumors. Cancer Res 61 : 4048-4054, 2001
  136. Mohme M, Schliffke S, Maire CL, Runger A, Glau L, Mende KC, et al. : Immunophenotyping of newly diagnosed and recurrent glioblastoma defines distinct immune exhaustion profiles in peripheral and tumor-infiltrating lymphocytes. Clin Cancer Res 24 : 4187-4200, 2018 https://doi.org/10.1158/1078-0432.CCR-17-2617
  137. Morgan RA, Chinnasamy N, Abate-Daga D, Gros A, Robbins PF, Zheng Z, et al. : Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J Immunother 36 : 133-151, 2013 https://doi.org/10.1097/CJI.0b013e3182829903
  138. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, et al. : Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314 : 126-129, 2006 https://doi.org/10.1126/science.1129003
  139. Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA : Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 18 : 843-851, 2010 https://doi.org/10.1038/mt.2010.24
  140. Mount CW, Majzner RG, Sundaresh S, Arnold EP, Kadapakkam M, Haile S, et al. : Potent antitumor efficacy of anti-GD2 CAR T cells in H3-K27M+diffuse midline gliomas. Nat Med 24 : 572-579, 2018 https://doi.org/10.1038/s41591-018-0006-x
  141. Muller N, Michen S, Tietze S, Topfer K, Schulte A, Lamszus K, et al. : Engineering NK cells modified with an EGFRvIII-specific chimeric antigen receptor to overexpress CXCR4 improves immunotherapy of CXCL12/SDF-1α-secreting glioblastoma. J Immunother 38 : 197-210,
  142. Murakami T, Nakazawa T, Natsume A, Nishimura F, Nakamura M, Matsuda R, et al. : Novel human NK cell line carrying CAR targeting EGFRvIII induces antitumor effects in glioblastoma cells. Anticancer Res 38 : 5049-5056, 2018 https://doi.org/10.21873/anticanres.12824
  143. Nagorsen D, Baeuerle PA : Immunomodulatory therapy of cancer with T cell-engaging BiTE antibody blinatumomab. Exp Cell Res 317 : 1255-1260, 2011 https://doi.org/10.1016/j.yexcr.2011.03.010
  144. Nair S, Wang JB, Tsao ST, Liu Y, Zhu W, Slayton WB, et al. : Functional improvement of chimeric antigen receptor through intrinsic interleukin-15Rα signaling. Curr Gene Ther 19 : 40-53, 2019 https://doi.org/10.2174/1566523218666181116093857
  145. Nausch N, Cerwenka A : NKG2D ligands in tumor immunity. Oncogene 27 : 5944-5958, 2008 https://doi.org/10.1038/onc.2008.272
  146. Nejo T, Yamamichi A, Almeida ND, Goretsky YE, Okada H : Tumor antigens in glioma. Semin Immunol 47 : 101385, 2020
  147. O'Rourke DM, Nasrallah MP, Desai A, Melenhorst JJ, Mansfield K, Morrissette JJD, et al. : A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med 9 : eaaa0984, 2017
  148. Odorizzi PM, Pauken KE, Paley MA, Sharpe A, Wherry EJ : Genetic absence of PD-1 promotes accumulation of terminally differentiated exhausted CD8+ T cells. J Exp Med 212 : 1125-1137,
  149. Ogawa K, Pasqualini R, Lindberg RA, Kain R, Freeman AL, Pasquale EB : The ephrin-A1 ligand and its receptor, EphA2, are expressed during tumor neovascularization. Oncogene 19 : 6043-6052, 2000 https://doi.org/10.1038/sj.onc.1204004
  150. O'Rourke D, Desai A, Morrissette J, Martinez-Lage M, Nasrallah M, Brem S, et al. : IMCT-15 PILOT study of T cells redirected to EGFRvIII with a chimeric antigen receptor in patients with EGFRvIII+ glioblastoma. Neuro Oncol 17(suppl_5) : v110-v111,
  151. Ott PA, Govindan R, Naing A, Friedlander TW, Margolin K, Lin JJ, et al. : A personal neoantigen vaccine, NEO-PV-01, with anti-PD1 induces broad de novo anti-tumor immunity in patients with metastatic melanoma, NSCLC, and bladder cancer. Ann Oncol 29 : viii400, 2018
  152. Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J, Bozym DJ, et al. : An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547 : 217-221, 2017 https://doi.org/10.1038/nature22991
  153. Park A, Lee Y, Kim MS, Kang YJ, Park YJ, Jung H, et al. : Prostaglandin E2 secreted by thyroid cancer cells contributes to immune escape through the suppression of natural killer (NK) cell cytotoxicity and NK cell differentiation. Front Immunol 9 : 1859, 2018
  154. Park J, Kwon M, Kim KH, Kim TS, Hong SH, Kim CG, et al. : Immune checkpoint inhibitor-induced reinvigoration of tumor-infiltrating CD8+ T cells is determined by their differentiation status in glioblastoma. Clin Cancer Res 25 : 2549-2559, 2019
  155. Parkhurst MR, Yang JC, Langan RC, Dudley ME, Nathan DA, Feldman SA, et al. : T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther 19 : 620-626, 2011 https://doi.org/10.1038/mt.2010.272
  156. Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, et al. : Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344 : 1396-1401, 2014 https://doi.org/10.1126/science.1254257
  157. Paulos CM, Kaiser A, Wrzesinski C, Hinrichs CS, Cassard L, Boni A, et al. : Toll-like receptors in tumor immunotherapy. Clin Cancer Res 13(18 Pt 1) : 5280-5289, 2007 https://doi.org/10.1158/1078-0432.CCR-07-1378
  158. Pfefferle A, Huntington ND : You have got a fast CAR: chimeric antigen receptor NK cells in cancer therapy. Cancers (Basel) 12 : 706, 2020
  159. Phillips JH, Lanier LL : Dissection of the lymphokine-activated killer phenomenon. Relative contribution of peripheral blood natural killer cells and T lymphocytes to cytolysis. J Exp Med 164 : 814-825, 1986 https://doi.org/10.1084/jem.164.3.814
  160. Picarda E, Ohaegbulam KC, Zang X : Molecular pathways: targeting B7-H3 (CD276) for human cancer immunotherapy. Clin Cancer Res 22 : 3425-3431, 2016 https://doi.org/10.1158/1078-0432.CCR-15-2428
  161. Pickup M, Novitskiy S, Moses HL : The roles of TGFβ in the tumour microenvironment. Nat Rev Cancer 13 : 788-799, 2013 https://doi.org/10.1038/nrc3603
  162. Plautz GE, Barnett GH, Miller DW, Cohen BH, Prayson RA, Krauss JC, et al. : Systemic T cell adoptive immunotherapy of malignant gliomas. J Neurosurg 89 : 42-51, 1998 https://doi.org/10.3171/jns.1998.89.1.0042
  163. Plautz GE, Miller DW, Barnett GH, Stevens GH, Maffett S, Kim J, et al. : T cell adoptive immunotherapy of newly diagnosed gliomas. Clin Cancer Res 6 : 2209-2218, 2000
  164. Poirot L, Philip B, Schiffer-Mannioui C, Le Clerre D, Chion-Sotinel I, Derniame S, et al. : Multiplex genome-edited T-cell manufacturing platform for "Off-the-Shelf" adoptive T-cell immunotherapies. Cancer Res 75 : 3853-3864,
  165. Powell AB, Yadavilli S, Saunders D, Van Pelt S, Chorvinsky E, Burga RA, et al. : Medulloblastoma rendered susceptible to NK-cell attack by TGFβ neutralization. J Transl Med 17 : 321, 2019
  166. Prager I, Watzl C : Mechanisms of natural killer cell-mediated cellular cytotoxicity. J Leukoc Biol 105 : 1319-1329, 2019 https://doi.org/10.1002/JLB.MR0718-269R
  167. Prapa M, Chiavelli C, Golinelli G, Grisendi G, Bestagno M, Di Tinco R, et al. : GD2 CAR T cells against human glioblastoma. NPJ Precis Oncol 5 : 93, 2021
  168. Provasi E, Genovese P, Lombardo A, Magnani Z, Liu PQ, Reik A, et al. : Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer. Nat Med 18 : 807-815, 2012 https://doi.org/10.1038/nm.2700
  169. Rafiq S, Hackett CS, Brentjens RJ : Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat Rev Clin Oncol 17 : 147-167, 2020 https://doi.org/10.1038/s41571-019-0297-y
  170. Rajesh E, Sankari LS, Malathi L, Krupaa JR : Naturally occurring products in cancer therapy. J Pharm Bioallied Sci 7(Suppl 1) : S181-S183, 2015 https://doi.org/10.4103/0975-7406.155895
  171. Ranson T, Vosshenrich CA, Corcuff E, Richard O, Muller W, Di Santo JP : IL-15 is an essential mediator of peripheral NK-cell homeostasis. Blood 101 : 4887-4893, 2003 https://doi.org/10.1182/blood-2002-11-3392
  172. Reap EA, Suryadevara CM, Batich KA, Sanchez-Perez L, Archer GE, Schmittling RJ, et al. : Dendritic cells enhance polyfunctionality of adoptively transferred T cells that target cytomegalovirus in glioblastoma. Cancer Res 78 : 256-264, 2018 https://doi.org/10.1158/0008-5472.CAN-17-0469
  173. Reits EA, Hodge JW, Herberts CA, Groothuis TA, Chakraborty M, Wansley EK, et al. : Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med 203 : 1259-1271, 2006 https://doi.org/10.1084/jem.20052494
  174. Ren J, Liu X, Fang C, Jiang S, June CH, Zhao Y : Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin Cancer Res 23 : 2255-2266, 2017 https://doi.org/10.1158/1078-0432.CCR-16-1300
  175. Rezvani K, Rouce RH : The application of natural killer cell immunotherapy for the treatment of cancer. Front Immunol 6 : 578,
  176. Riccione K, Suryadevara CM, Snyder D, Cui X, Sampson JH, Sanchez-Perez L : Generation of CAR T cells for adoptive therapy in the context of glioblastoma standard of care. J Vis Exp 96 : 52397,
  177. Romani M, Pistillo MP, Carosio R, Morabito A, Banelli B : Immune checkpoints and innovative therapies in glioblastoma. Front Oncol 8 : 464, 2018
  178. Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A, et al. : Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295 : 2097-2100, 2002 https://doi.org/10.1126/science.1068440
  179. Sahebjam S, Sharabi A, Lim M, Kesarwani P, Chinnaiyan P : Immunotherapy and radiation in glioblastoma. J Neurooncol 134 : 531-539, 2017 https://doi.org/10.1007/s11060-017-2413-0
  180. Sahin U, Derhovanessian E, Miller M, Kloke BP, Simon P, Lower M, et al. : Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547 : 222-226, 2017 https://doi.org/10.1038/nature23003
  181. Salem ML, Cole DJ : Dendritic cell recovery post-lymphodepletion: a potential mechanism for anti-cancer adoptive T cell therapy and vaccination. Cancer Immunol Immunother 59 : 341-353, 2010 https://doi.org/10.1007/s00262-009-0792-6
  182. Sampson JH, Choi BD, Sanchez-Perez L, Suryadevara CM, Snyder DJ, Flores CT, et al. : EGFRvIII mCAR-modified T-cell therapy cures mice with established intracerebral glioma and generates host immunity against tumor-antigen loss. Clin Cancer Res 20 : 972-984, 2014 https://doi.org/10.1158/1078-0432.CCR-13-0709
  183. Sanchez CE, Dowlati EP, Geiger AE, Chaudhry K, Tovar MA, Bollard CM, et al. : NK cell adoptive immunotherapy of cancer: evaluating recognition strategies and overcoming limitations. Transplant Cell Ther 27 : 21-35, 2021 https://doi.org/10.1016/j.bbmt.2020.09.030
  184. Sarivalasis A, Boudousquie C, Balint K, Stevenson BJ, Gannon PO, Iancu EM, et al. : A phase I/II trial comparing autologous dendritic cell vaccine pulsed either with personalized peptides (PEP-DC) or with tumor lysate (OC-DC) in patients with advanced high-grade ovarian serous carcinoma. J Transl Med 17 : 391, 2019
  185. Sarkaria JN, Hu LS, Parney IF, Pafundi DH, Brinkmann DH, Laack NN, et al. : Is the blood-brain barrier really disrupted in all glioblastomas? A critical assessment of existing clinical data. Neuro Oncol 20 : 184-191, 2018 https://doi.org/10.1093/neuonc/nox175
  186. Schiltz PM, Beutel LD, Nayak SK, Dillman RO : Characterization of tumor-infiltrating lymphocytes derived from human tumors for use as adoptive immunotherapy of cancer. J Immunother 20 : 377-386, 1997 https://doi.org/10.1097/00002371-199709000-00007
  187. Schuessler A, Smith C, Beagley L, Boyle GM, Rehan S, Matthews K, et al. : Autologous T-cell therapy for cytomegalovirus as a consolidative treatment for recurrent glioblastoma. Cancer Res 74 : 3466-3476, 2014 https://doi.org/10.1158/0008-5472.CAN-14-0296
  188. Seaman S, Zhu Z, Saha S, Zhang XM, Yang MY, Hilton MB, et al. : Eradication of tumors through simultaneous ablation of CD276/B7-H3-positive tumor cells and tumor vasculature. Cancer Cell 31 : 501-515. e8, 2017 https://doi.org/10.1016/j.ccell.2017.03.005
  189. Shaim H, Shanley M, Basar R, Daher M, Gumin J, Zamler DB, et al. : Targeting the αv integrin/TGF-β axis improves natural killer cell function against glioblastoma stem cells. J Clin Invest 131 : e142116, 2021
  190. Shen SH, Woroniecka K, Barbour AB, Fecci PE, Sanchez-Perez L, Sampson JH : CAR T cells and checkpoint inhibition for the treatment of glioblastoma. Expert Opin Biol Ther 20 : 579-591, 2020 https://doi.org/10.1080/14712598.2020.1727436
  191. Shimada A : Hematological malignancies and molecular targeting therapy. Eur J Pharmacol 862 : 172641, 2019
  192. Shin MH, Kim J, Lim SA, Kim J, Kim SJ, Lee KM : NK cell-based immunotherapies in cancer. Immune Netw 20 : e14, 2020
  193. Siegler EL, Zhu Y, Wang P, Yang L : Off-the-shelf CAR-NK cells for cancer immunotherapy. Cell Stem Cell 23 : 160-161, 2018 https://doi.org/10.1016/j.stem.2018.07.007
  194. Song Y, Liu Q, Zuo T, Wei G, Jiao S : Combined antitumor effects of anti-EGFR variant III CAR-T cell therapy and PD-1 checkpoint blockade on glioblastoma in mouse model. Cell Immunol 352 : 104112, 2020
  195. Soroceanu L, Gillespie Y, Khazaeli MB, Sontheimer H : Use of chlorotoxin for targeting of primary brain tumors. Cancer Res 58 : 4871-4879, 1998
  196. Speiser DE, Miranda R, Zakarian A, Bachmann MF, McKall-Faienza K, Odermatt B, et al. : Self antigens expressed by solid tumors do not efficiently stimulate naive or activated T cells: implications for immunotherapy. J Exp Med 186 : 645-653, 1997 https://doi.org/10.1084/jem.186.5.645
  197. Steeghs N, Nortier JW, Gelderblom H : Small molecule tyrosine kinase inhibitors in the treatment of solid tumors: an update of recent developments. Ann Surg Oncol 14 : 942-953, 2007 https://doi.org/10.1245/s10434-006-9227-1
  198. Suarez ER, Chang de K, Sun J, Sui J, Freeman GJ, Signoretti S, et al. : Chimeric antigen receptor T cells secreting anti-PD-L1 antibodies more effectively regress renal cell carcinoma in a humanized mouse model. Oncotarget 7 : 34341-34355, 2016 https://doi.org/10.18632/oncotarget.9114
  199. Suck G, Odendahl M, Nowakowska P, Seidl C, Wels WS, Klingemann HG, et al. : NK-92: an 'off-the-shelf therapeutic' for adoptive natural killer cell-based cancer immunotherapy. Cancer Immunol Immunother 65 : 485-492, 2016 https://doi.org/10.1007/s00262-015-1761-x
  200. Suryadevara CM, Gedeon PC, Sanchez-Perez L, Verla T, Alvarez-Breckenridge C, Choi BD, et al. : Are BiTEs the "missing link" in cancer therapy? Oncoimmunology 4 : e1008339,
  201. Tatenhorst L, Rescher U, Gerke V, Paulus W : Knockdown of annexin 2 decreases migration of human glioma cells in vitro. Neuropathol Appl Neurobiol 32 : 271-277, 2006 https://doi.org/10.1111/j.1365-2990.2006.00720.x
  202. Tonn T, Becker S, Esser R, Schwabe D, Seifried E : Cellular immunotherapy of malignancies using the clonal natural killer cell line NK-92. J Hematother Stem Cell Res 10 : 535-544, 2001 https://doi.org/10.1089/15258160152509145
  203. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. : Five-year survival and correlates among patients with advanced melanoma, renal cell carcinoma, or non-small cell lung cancer treated with nivolumab. JAMA Oncol 5 : 1411-1420, 2019 https://doi.org/10.1001/jamaoncol.2019.2187
  204. Torikai H, Reik A, Liu PQ, Zhou Y, Zhang L, Maiti S, et al. : A foundation for universal T-cell based immunotherapy: T cells engineered to express a CD19-specific chimeric-antigen-receptor and eliminate expression of endogenous TCR. Blood 119 : 5697-5705, 2012 https://doi.org/10.1182/blood-2012-01-405365
  205. Touat M, Idbaih A, Sanson M, Ligon KL : Glioblastoma targeted therapy: updated approaches from recent biological insights. Ann Oncol 28 : 1457-1472, 2017 https://doi.org/10.1093/annonc/mdx106
  206. Tran NL, McDonough WS, Savitch BA, Fortin SP, Winkles JA, Symons M, et al. : Increased fibroblast growth factor-inducible 14 expression levels promote glioma cell invasion via Rac1 and nuclear factor-kappaB and correlate with poor patient outcome. Cancer Res 66 : 9535-9542, 2006 https://doi.org/10.1158/0008-5472.CAN-06-0418
  207. Trotta R, Dal Col J, Yu J, Ciarlariello D, Thomas B, Zhang X, et al. : TGF-beta utilizes SMAD3 to inhibit CD16-mediated IFN-gamma production and antibody-dependent cellular cytotoxicity in human NK cells. J Immunol 181 : 3784-3792, 2008 https://doi.org/10.4049/jimmunol.181.6.3784
  208. Upreti D, Bakhshinyan D, Bloemberg D, Vora P, Venugopal C, Singh SK : Strategies to enhance the efficacy of T-cell therapy for central nervous system tumors. Front Immunol 11 : 599253, 2020
  209. van Buuren MM, Calis JJ, Schumacher TN : High sensitivity of cancer exome-based CD8 T cell neo-antigen identification. Oncoimmunology 3 : e28836, 2014
  210. Veiseh M, Gabikian P, Bahrami SB, Veiseh O, Zhang M, Hackman RC, et al. : Tumor paint: a chlorotoxin:Cy5.5 bioconjugate for intraoperative visualization of cancer foci. Cancer Res 67 : 6882-6888, 2007 https://doi.org/10.1158/0008-5472.CAN-06-3948
  211. Verneris MR, Miller JS : the phenotypic and functional characteristics of umbilical cord blood and peripheral blood natural killer cells. Br J Haematol 147 : 185-191, 2009 https://doi.org/10.1111/j.1365-2141.2009.07768.x
  212. Vigdorovich V, Ramagopal UA, Lazar-Molnar E, Sylvestre E, Lee JS, Hofmeyer KA, et al. : Structure and T cell inhibition properties of B7 family member, B7-H3. Structure 21 : 707-717, 2013 https://doi.org/10.1016/j.str.2013.03.003
  213. Voskoboinik I, Smyth MJ, Trapani JA : Perforin-mediated target-cell death and immune homeostasis. Nat Rev Immunol 6 : 940-952, 2006 https://doi.org/10.1038/nri1983
  214. Wallen H, Thompson JA, Reilly JZ, Rodmyre RM, Cao J, Yee C : Fludarabine modulates immune response and extends in vivo survival of adoptively transferred CD8 T cells in patients with metastatic melanoma. PLoS One 4 : e4749, 2009
  215. Walzer T, Dalod M, Robbins SH, Zitvogel L, Vivier E : Natural-killer cells and dendritic cells: "l'union fait la force". Blood 106 : 2252-2258, 2005 https://doi.org/10.1182/blood-2005-03-1154
  216. Walzer T, Dalod M, Vivier E, Zitvogel L : Natural killer cell-dendritic cell crosstalk in the initiation of immune responses. Expert Opin Biol Ther 5 Suppl 1 : S49-S59, 2005 https://doi.org/10.1517/14712598.5.1.S49
  217. Wang D, Quan Y, Yan Q, Morales JE, Wetsel RA : Targeted disruption of the β2-microglobulin gene minimizes the immunogenicity of human embryonic stem cells. Stem Cells Transl Med 4 : 1234-1245,
  218. Wang D, Starr R, Chang WC, Aguilar B, Alizadeh D, Wright SL, et al. : Chlorotoxin-directed CAR T cells for specific and effective targeting of glioblastoma. Sci Transl Med 12 : eaaw2672, 2020
  219. Wang G, Zhang Z, Zhong K, Wang Z, Yang N, Tang X, et al. : CXCL11-armed oncolytic adenoviruses enhance CAR-T cell therapeutic efficacy and reprogram tumor microenvironment in glioblastoma. Mol Ther 31 : 134-153, 2023 https://doi.org/10.1016/j.ymthe.2022.08.021
  220. Wang J, Toregrosa-Allen S, Elzey BD, Utturkar S, Lanman NA, Bernal-Crespo V, et al. : Multispecific targeting of glioblastoma with tumor microenvironment-responsive multifunctional engineered NK cells. Proc Natl Acad Sci U S A 118 : e2107507118, 2021 https://doi.org/10.1073/pnas.2107507118
  221. Wang LF, Fokas E, Bieker M, Rose F, Rexin P, Zhu Y, et al. : Increased expression of EphA2 correlates with adverse outcome in primary and recurrent glioblastoma multiforme patients. Oncol Rep 19 : 151-156, 2008 https://doi.org/10.3892/or.19.1.151
  222. Wang QM, Tang PM, Lian GY, Li C, Li J, Huang XR, et al. : Enhanced cancer immunotherapy with Smad3-silenced NK-92 cells. Cancer Immunol Res 6 : 965-977, 2018 https://doi.org/10.1158/2326-6066.CIR-17-0491
  223. Weathers SP, Penas-Prado M, Pei BL, Ling X, Kassab C, Banerjee P, et al. : Glioblastoma-mediated immune dysfunction limits CMV-specific T cells and therapeutic responses: results from a phase I/II trial. Clin Cancer Res 26 : 3565-3577, 2020 https://doi.org/10.1158/1078-0432.CCR-20-0176
  224. Wei J, Luo C, Wang Y, Guo Y, Dai H, Tong C, et al. : PD-1 silencing impairs the anti-tumor function of chimeric antigen receptor modified T cells by inhibiting proliferation activity. J Immunother Cancer 7 : 209, 2019
  225. Weiss T, Schneider H, Silginer M, Steinle A, Pruschy M, Polic B, et al. : NKG2D-dependent antitumor effects of chemotherapy and radiotherapy against glioblastoma. Clin Cancer Res 24 : 882-895, 2018 https://doi.org/10.1158/1078-0432.CCR-17-1766
  226. Weiss T, Weller M, Guckenberger M, Sentman CL, Roth P : NKG2Dbased CAR T cells and radiotherapy exert synergistic efficacy in glioblastoma. Cancer Res 78 : 1031-1043, 2018 https://doi.org/10.1158/0008-5472.CAN-17-1788
  227. Weller M, Butowski N, Tran DD, Recht LD, Lim M, Hirte H, et al. : Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol 18 : 1373-1385, 2017 https://doi.org/10.1016/S1470-2045(17)30517-X
  228. Wen PY, Reardon DA, Armstrong TS, Phuphanich S, Aiken RD, Landolfi JC, et al. : A randomized double-blind placebo-controlled phase II trial of dendritic cell vaccine ICT-107 in newly diagnosed patients with glioblastoma. Clin Cancer Res 25 : 5799-5807, 2019 https://doi.org/10.1158/1078-0432.CCR-19-0261
  229. Wherry EJ : T cell exhaustion. Nat Immunol 12 : 492-499, 2011 https://doi.org/10.1038/ni.2035
  230. Wherry EJ, Blattman JN, Murali-Krishna K, van der Most R, Ahmed R : Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment. J Virol 77 : 4911-4927, 2003 https://doi.org/10.1128/JVI.77.8.4911-4927.2003
  231. Wikstrand CJ, McLendon RE, Friedman AH, Bigner DD : Cell surface localization and density of the tumor-associated variant of the epidermal growth factor receptor, EGFRvIII. Cancer Res 57 : 4130-4140, 1997
  232. Woan KV, Kim H, Bjordahl R, Davis ZB, Gaidarova S, Goulding J, et al. : Harnessing features of adaptive NK cells to generate iPSC-derived NK cells for enhanced immunotherapy. Cell Stem Cell 28 : 2062-2075.e5, 2021 https://doi.org/10.1016/j.stem.2021.08.013
  233. Wolf E, Hofmeister R, Kufer P, Schlereth B, Baeuerle PA : BiTEs: bispecific antibody constructs with unique anti-tumor activity. Drug Discov Today 10 : 1237-1244, 2005 https://doi.org/10.1016/S1359-6446(05)03554-3
  234. Woroniecka K, Chongsathidkiet P, Rhodin K, Kemeny H, Dechant C, Farber SH, et al. : T-cell exhaustion signatures vary with tumor type and are severe in glioblastoma. Clin Cancer Res 24 : 4175-4186, 2018 https://doi.org/10.1158/1078-0432.CCR-17-1846
  235. Wu X, Luo H, Shi B, Di S, Sun R, Su J, et al. : Combined antitumor effects of sorafenib and GPC3-CAR T cells in mouse models of hepatocellular carcinoma. Mol Ther 27 : 1483-1494, 2019 https://doi.org/10.1016/j.ymthe.2019.04.020
  236. Wykosky J, Gibo DM, Stanton C, Debinski W : EphA2 as a novel molecular marker and target in glioblastoma multiforme. Mol Cancer Res 3 : 541-551, 2005 https://doi.org/10.1158/1541-7786.MCR-05-0056
  237. Xiong L, Edwards CK 3rd, Zhou L : The biological function and clinical utilization of CD147 in human diseases: a review of the current scientific literature. Int J Mol Sci 15 : 17411-17441, 2014 https://doi.org/10.3390/ijms151017411
  238. Yang B, Liu H, Shi W, Wang Z, Sun S, Zhang G, et al. : Blocking transforming growth factor-β signaling pathway augments antitumor effect of adoptive NK-92 cell therapy. Int Immunopharmacol 17 : 198-204, 2013 https://doi.org/10.1016/j.intimp.2013.06.003
  239. Yang D, Sun B, Dai H, Li W, Shi L, Zhang P, et al. : T cells expressing NKG2D chimeric antigen receptors efficiently eliminate glioblastoma and cancer stem cells. J Immunother Cancer 7 : 171, 2019
  240. Yang I, Han SJ, Sughrue ME, Tihan T, Parsa AT : Immune cell infiltrate differences in pilocytic astrocytoma and glioblastoma: evidence of distinct immunological microenvironments that reflect tumor biology. J Neurosurg 115 : 505-511, 2011 https://doi.org/10.3171/2011.4.JNS101172
  241. Yang M, Yuan Y, Zhang H, Yan M, Wang S, Feng F, et al. : Prognostic significance of CD147 in patients with glioblastoma. J Neurooncol 115 : 19-26, 2013 https://doi.org/10.1007/s11060-013-1207-2
  242. Yang W, Lee KW, Srivastava RM, Kuo F, Krishna C, Chowell D, et al. : Immunogenic neoantigens derived from gene fusions stimulate T cell responses. Nat Med 25 : 767-775, 2019 https://doi.org/10.1038/s41591-019-0434-2
  243. Yao Y, Luo F, Tang C, Chen D, Qin Z, Hua W, et al. : Molecular subgroups and B7-H4 expression levels predict responses to dendritic cell vaccines in glioblastoma: an exploratory randomized phase II clinical trial. Cancer Immunol Immunother 67 : 1777-1788, 2018 https://doi.org/10.1007/s00262-018-2232-y
  244. Yi Z, Prinzing BL, Cao F, Gottschalk S, Krenciute G : Optimizing EphA2-CAR T cells for the adoptive immunotherapy of glioma. Mol Ther Methods Clin Dev 9 : 70-80, 2018 https://doi.org/10.1016/j.omtm.2018.01.009
  245. Yin Y, Boesteanu AC, Binder ZA, Xu C, Reid RA, Rodriguez JL, et al. : Checkpoint blockade reverses anergy in IL-13Rα2 humanized scFv-based CAR T cells to treat murine and canine gliomas. Mol Ther Oncolytics 11 : 20-38, 2018 https://doi.org/10.1016/j.omto.2018.08.002
  246. Yvon ES, Burga R, Powell A, Cruz CR, Fernandes R, Barese C, et al. : Cord blood natural killer cells expressing a dominant negative TGF-β receptor: implications for adoptive immunotherapy for glioblastoma. Cytotherapy 19 : 408-418, 2017 https://doi.org/10.1016/j.jcyt.2016.12.005
  247. Zajac AJ, Blattman JN, Murali-Krishna K, Sourdive DJ, Suresh M, Altman JD, et al. : Viral immune evasion due to persistence of activated T cells without effector function. J Exp Med 188 : 2205-2213, 1998 https://doi.org/10.1084/jem.188.12.2205
  248. Zelinski DP, Zantek ND, Stewart JC, Irizarry AR, Kinch MS : EphA2 overexpression causes tumorigenesis of mammary epithelial cells. Cancer Res 61 : 2301-2306, 2001
  249. Zhang C, Burger MC, Jennewein L, Genssler S, Schonfeld K, Zeiner P, et al. : ErbB2/HER2-specific NK cells for targeted therapy of glioblastoma. J Natl Cancer Inst 108 : djv375, 2016
  250. Zhang C, Oberoi P, Oelsner S, Waldmann A, Lindner A, Tonn T, et al. : Chimeric antigen receptor-engineered NK-92 cells: an off-the-shelf cellular therapeutic for targeted elimination of cancer cells and induction of protective antitumor immunity. Front Immunol 8 : 533, 2017
  251. Zhang JG, Eguchi J, Kruse CA, Gomez GG, Fakhrai H, Schroter S, et al. : Antigenic profiling of glioma cells to generate allogeneic vaccines or dendritic cell-based therapeutics. Clin Cancer Res 13(2 Pt 1) : 566-575, 2007 https://doi.org/10.1158/1078-0432.CCR-06-1576
  252. Zhang R, Yuan F, Shu Y, Tian Y, Zhou B, Yi L, et al. : Personalized neoantigen-pulsed dendritic cell vaccines show superior immunogenicity to neoantigen-adjuvant vaccines in mouse tumor models. Cancer Immunol Immunother 69 : 135-145, 2020 https://doi.org/10.1007/s00262-019-02448-z
  253. Zhao J, Cao Y, Lei Z, Yang Z, Zhang B, Huang B : Selective depletion of CD4+CD25+Foxp3+ regulatory T cells by low-dose cyclophosphamide is explained by reduced intracellular ATP levels. Cancer Res 70 : 4850-4858, 2010 https://doi.org/10.1158/0008-5472.CAN-10-0283
  254. Zhao J, Lin Q, Song Y, Liu D : Universal CARs, universal T cells, and universal CAR T cells. J Hematol Oncol 11 : 132, 2018
  255. Zhao Z, Condomines M, van der Stegen SJC, Perna F, Kloss CC, Gunset G, et al. : Structural design of engineered costimulation determines tumor rejection kinetics and persistence of CAR T cells. Cancer Cell 28 : 415-428, 2015  https://doi.org/10.1016/j.ccell.2015.09.004