과제정보
This research project was supported by the University Emphasis Research Institute Support Program (No. 2018R1A61A03023584), funded by the National Research Foundation of Korea. This research was also supported by Korea Institute of Marine Science & Technology Promotion (KIMST) funded by the Ministry of Oceans and Fisheries (20220042, Korea Sea Grant Program: GangWon Sea Grant).
참고문헌
- Fujiwara N, Kobayashi K. 2005. Macrophages in inflammation. Inflamm. Allergy Drug Targets. 4: 281-286. https://doi.org/10.2174/1568010054022024
- Wang H, Bi H, Gao T, Zhao B, Ni W, Liu J. 2018. A homogalacturonan from Hippophae rhamnoides L. berries enhance immunomodulatory activity through TLR4/MyD88 pathway mediated activation of macrophages. Int. J. Biol. Macromol. 107: 1039-1045. https://doi.org/10.1016/j.ijbiomac.2017.09.083
- Zhang X, Goncalves R, Mosser DM. 2008. The isolation and characterization of murine macrophages. Curr. Protoc. Immunol. 83: 1-14. https://doi.org/10.1002/0471142735.im1401s83
- Cassado AdA, D'Imperio Lima MR, Bortoluci KR. 2015. Revisiting mouse peritoneal macrophages: heterogeneity, development, and function. Front. Immunol. 6: 225.
- Sak K. 2012. Chemotherapy and dietary phytochemical agents. Chemother. Res. Pract. 2012: 282570.
- Emadi A, Jones RJ, Brodsky RA. 2009. Cyclophosphamide and cancer: golden anniversary. Nat. Rev. Clin. Oncol. 6: 638-647. https://doi.org/10.1038/nrclinonc.2009.146
- Ahlmann M, Hempel G. 2016. The effect of cyclophosphamide on the immune system: implications for clinical cancer therapy. Cancer Chemother. Pharmacol. 78: 661-671. https://doi.org/10.1007/s00280-016-3152-1
- Ren Z, He C, Fan Y, Si H, Wang Y, Shi Z, et al. 2014. Immune-enhancing activity of polysaccharides from Cyrtomium macrophyllum. Int. J. Biol. Macromol. 70: 590-595. https://doi.org/10.1016/j.ijbiomac.2014.07.044
- Guo MZ, Meng M, Feng CC, Wang X, Wang CL. 2019. A novel polysaccharide obtained from Craterellus cornucopioides enhances immunomodulatory activity in immunosuppressive mice models via regulation of the TLR4-NF-κB pathway. Food Funct. 10: 4792-4801. https://doi.org/10.1039/C9FO00201D
- Wang H, Xu L, Yu M, Wang Y, Jiang T, Yang S, et al. 2019. Glycosaminoglycan from Apostichopus japonicus induces immunomodulatory activity in cyclophosphamide-treated mice and in macrophages. Int. J. Biol. Macromol. 130: 229-237. https://doi.org/10.1016/j.ijbiomac.2019.02.093
- Yu Q, Nie SP, Wang JQ, Huang DF, Li WJ, Xie MY. 2015. Molecular mechanism underlying chemoprotective effects of Ganoderma atrum polysaccharide in cyclophosphamide-induced immunosuppressed mice. J. Funct. Foods 15: 52-60. https://doi.org/10.1016/j.jff.2015.03.015
- Shi L. 2016. Bioactivities, isolation and purification methods of polysaccharides from natural products: a review. Int. J. Biol. Macromol. 92: 37-48. https://doi.org/10.1016/j.ijbiomac.2016.06.100
- Shi L, Fu Y. 2011. Isolation, purification, and immunomodulatory activity in vitro of three polysaccharides from roots of Cudrania tricuspidata. Acta Biochim. Biophys. Sin. 43: 418-424. https://doi.org/10.1093/abbs/gmr024
- Yu XH, Liu Y, Wu XL, Liu LZ, Fu W, Song DD. 2017. Isolation, purification, characterization and immunostimulatory activity of polysaccharides derived from American ginseng. Carbohydr. Polym. 156: 9-18. https://doi.org/10.1016/j.carbpol.2016.08.092
- Ren D, Zhao Y, Zheng Q, Alim A, Yang X. 2019. Immunomodulatory effects of an acidic polysaccharide fraction from herbal Gynostemma pentaphyllum tea in RAW264.7 cells. Food Funct. 10: 2186-2197. https://doi.org/10.1039/C9FO00219G
- Schepetkin IA, Quinn MT. 2006. Botanical polysaccharides: Macrophage immunomodulation and therapeutic potential. Int. Immunopharmacol. 6: 317-333. https://doi.org/10.1016/j.intimp.2005.10.005
- Hao LX, Zhao XH. 2016. Immunomodulatory potentials of the water-soluble yam (Dioscorea opposita Thunb) polysaccharides for the normal and cyclophosphamide-suppressed mice. Food Agr. Immunol. 27: 667-677. https://doi.org/10.1080/09540105.2016.1148666
- Cui HY, Wang CL, Wang YR, Li ZJ, Chen MH, Li FJ, et al. 2015. Pleurotus nebrodensis polysaccharide (PN-S) enhances the immunity of immunosuppressed mice. Chin. J. Nat. Med. 13: 760-766. https://doi.org/10.1016/S1875-5364(15)30076-5
- Du XF, Jiang CZ, Wu CF, Won EK, Choung SY. 2008. Synergistic immunostimulating activity of pidotimod and red ginseng acidic polysaccharide against cyclophosphamide-induced immunosuppression. Arch. Pharm. Res. 31: 1153-1159. https://doi.org/10.1007/s12272-001-1282-6
- Song YR, Sung SK, Jang M, Lim TG, Cho CW, Han CJ, et al. 2018. Enzyme-assisted extraction, chemical characteristics, and immunostimulatory activity of polysaccharides from Korean ginseng (Panax ginseng Meyer). Int. J. Biol. Macromol. 116: 1089-1097. https://doi.org/10.1016/j.ijbiomac.2018.05.132
- Zhou R, He D, Xie J, Zhou Q, Zeng H, Li H, et al. 2021. The synergistic effects of polysaccharides and ginsenosides from American ginseng (Panax quinquefolius L.) ameliorating cyclophosphamide-induced intestinal immune disorders and gut barrier dysfunctions based on microbiome-metabolomics analysis. Front. Immunol. 12: 665901.
- Choi Kt. 2008. Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng C A Meyer. Acta Pharmacol. Sin. 29: 1109-1118. https://doi.org/10.1111/j.1745-7254.2008.00869.x
- Lee SY, Kim Yk, Park Ni, Kim C, Lee C, Park SU. 2010. Chemical constituents and biological activities of the berry of Panax ginseng. J. Med. Plants Res. 4: 349-353.
- Wang Y, Huang M, Sun R, Pan L. 2015. Extraction, characterization of a Ginseng fruits polysaccharide and its immune modulating activities in rats with Lewis lung carcinoma. Carbohydr. Polym. 127: 215-221. https://doi.org/10.1016/j.carbpol.2015.03.070
- Kim YS, Kang KS, Kim SI. 1990. Study on antitumor and immunomodulating activities of polysaccharide fractions from Panax ginseng: comparison of effects of neutral and acidic polysaccharide fraction. Arch. Pharm. Res. 13: 330-337. https://doi.org/10.1007/BF02858168
- Zhou X, Shi H, Jiang G, Zhou Y, Xu J. 2014. Antitumor activities of ginseng polysaccharide in C57BL/6 mice with Lewis lung carcinoma. Tumor Biol. 35: 12561-12566. https://doi.org/10.1007/s13277-014-2576-7
- Wang L, Huang Y, Yin G, Wang J, Wang P, Chen ZY, et al. 2020. Antimicrobial activities of Asian ginseng, American ginseng, and notoginseng. Phytother. Res. 34: 1226-1236. https://doi.org/10.1002/ptr.6605
- Chen F, Huang G. 2019. Antioxidant activity of polysaccharides from different sources of ginseng. Int. J. Biol. Macromol. 125: 906-908. https://doi.org/10.1016/j.ijbiomac.2018.12.134
- Sun C, Chen Y, Li X, Tai G, Fan Y, Zhou Y. 2014. Anti-hyperglycemic and anti-oxidative activities of ginseng polysaccharides in STZ-induced diabetic mice. Food Funct. 5: 845-848. https://doi.org/10.1039/c3fo60326a
- Lee JH, Lee JS, Chung MS, Kim KH. 2004. In vitro anti-adhesive activity of an acidic polysaccharide from Panax ginseng on Porphyromonas gingivalis binding to erythrocytes. Planta Med. 70: 566-569. https://doi.org/10.1055/s-2004-827160
- Lee DY, Park CW, Lee SJ, Park HR, Seo DB, Park JY, et al. 2019. Immunostimulating and antimetastatic effects of polysaccharides purified from ginseng berry. Am. J. Chin. Med. 47: 823-839. https://doi.org/10.1142/S0192415X19500435
- Rod-in W, Talapphet N, Monmai C, Jang Ay, You S, Park WJ. 2021. Immune enhancement effects of Korean ginseng berry polysaccharides on RAW264.7 macrophages through MAPK and NF-kB signalling pathways. Food Agr. Immunol. 32: 298-309. https://doi.org/10.1080/09540105.2021.1934419
- Nam JH, Choi J, Monmai C, Rod-in W, Jang Ay, You S, et al. 2022. Immune-enhancing effects of crude polysaccharides from Korean ginseng berries on spleens of mice with cyclophosphamide-induced immunosuppression. J. Microbiol. Biotechnol. 32: 256-262. https://doi.org/10.4014/jmb.2110.10021
- Chen X-T, Li J, Wang H-L, Cheng W-M, Zhang L, Ge J-F. 2006. Immunomodulating effects of fractioned polysaccharides isolated from Yu-Ping-Feng-Powder in cyclophosphamide-treated mice. Am. J. Chin. Med. 34: 631-641. https://doi.org/10.1142/S0192415X06004168
- Kim JE, Monmai C, Rod-in W, Jang AY, You S, Lee SM, et al. 2020. Co-immunomodulatory activities of anionic macromolecules extracted from Codium fragile with red ginseng extract on peritoneal macrophage of immune-suppressed mice. J. Microbiol. Biotechnol. 30: 352-358. https://doi.org/10.4014/jmb.1909.09062
- Chen W, Zhang W, Shen W, Wang K. 2010. Effects of the acid polysaccharide fraction isolated from a cultivated Cordyceps sinensis on macrophagesin vitro. Cell. Immunol. 262: 69-74. https://doi.org/10.1016/j.cellimm.2010.01.001
- Chen X, Nie W, Fan S, Zhang J, Wang Y, Lu J, et al. 2012. A polysaccharide from Sargassum fusiforme protects against immunosuppression in cyclophosphamide-treated mice. Carbohydr. Polym. 90: 1114-1119. https://doi.org/10.1016/j.carbpol.2012.06.052
- Zhang WN, Gong LL, Liu Y, Zhou ZB, Wan CX, Xu JJ, et al. 2020. Immunoenhancement effect of crude polysaccharides of Helvella leucopus on cyclophosphamide-induced immunosuppressive mice. J. Funct. Foods 69: 103942.
- Renoux G. 1980. The general immunopharmacology of levamisole. Drugs 20: 89-99. https://doi.org/10.2165/00003495-198020020-00001
- Chen LX, Qi YL, Qi Z, Gao K, Gong RZ, Shao ZJ, et al. 2019. A comparative study on the effects of different parts of Panax ginseng on the immune activity of cyclophosphamide-induced immunosuppressed mice. Molecules 24: 1096.
- Liu T, Liu F, Peng LW, Chang L, Jiang YM. 2018. The peritoneal macrophages in inflammatory diseases and abdominal cancers. Oncol. Res. 26: 817-826. https://doi.org/10.3727/096504017X15130753659625
- Wang C, Yu X, Cao Q, Wang Y, Zheng G, Tan TK, et al. 2013. Characterization of murine macrophages from bone marrow, spleen and peritoneum. BMC Immunol. 14: 6-15. https://doi.org/10.1186/1471-2172-14-6
- Rahat M, Hemmerlein B. 2013. Macrophage-tumor cell interactions regulate the function of nitric oxide. Front. Physiol. 4: 144.
- Coleman JW. 2001. Nitric oxide in immunity and inflammation. Int. Immunopharmacol. 1: 1397-1406. https://doi.org/10.1016/S1567-5769(01)00086-8
- Yang RF, Zhao C, Chen X, Chan SW, Wu JY. 2015. Chemical properties and bioactivities of Goji (Lycium barbarum) polysaccharides extracted by different methods. J. Funct. Foods 17: 903-909. https://doi.org/10.1016/j.jff.2015.06.045