DOI QR코드

DOI QR Code

Intracellular Expression of CTB in Vibrio cholerae Strains in Laboratory Culture Conditions

  • Hunseok Choi (Department of Pharmacy, College of Pharmacy, Hanyang University) ;
  • Seonghyeon Son (Department of Pharmacy, College of Pharmacy, Hanyang University) ;
  • Donghyun Lee (Department of Pharmacy, College of Pharmacy, Hanyang University) ;
  • Jonghyun Bae (Department of Pharmacy, College of Pharmacy, Hanyang University) ;
  • Eunyoung Seo (Department of Pharmacy, College of Pharmacy, Hanyang University) ;
  • Dong Wook Kim (Department of Pharmacy, College of Pharmacy, Hanyang University) ;
  • Eun Jin Kim (Department of Pharmacy, College of Pharmacy, Hanyang University)
  • Received : 2023.02.09
  • Accepted : 2023.03.29
  • Published : 2023.06.28

Abstract

The introduction of the toxT-139F allele triggers the expression of TCP (toxin co-regulated pilus) and CT (cholera toxin) under simple laboratory culture conditions in most Vibrio cholerae strains. Such V. cholerae strains, especially strains that have been used in OCVs (oral cholera vaccines), can induce antibody responses against TCP in animal models. However, CT produced in these V. cholerae strains is secreted into the culture medium. In this study, V. cholerae strains that can express intracellular CTB under the control of the toxT-139F allele have been constructed for potential application in OCVs. First, we constructed a recombinant plasmid directly linking the ctxAB promoter to ctxB without ctxA and confirmed CTB expression from the plasmid in V. cholerae containing the toxT-139F allele. We constructed another recombinant plasmid to express NtrCTB, from which 14 internal amino acids-from the 7th to the 20th amino acid-of the leader peptide of CTB have been omitted, and we found that NtrCTB remained in the cells. Based on those results, we constructed V. cholerae strains in which chromosomal ctxAB is replaced by ntrctxB or ntrctxB-dimer. Both NtrCTB and NtrCTB-dimer remained in the bacterial cells, and 60% of the NtrCTB-dimer in the bacterial cells was maintained in a soluble form. To develop improved OCVs, these strains could be tested to see whether they induce immune responses against CTB in animal models.

Keywords

Acknowledgement

This work was supported by grants NRF-2021R1A2C1010857 and NRF-RS-2023-00208573 from the National Research Foundation (NRF) of Korea.

References

  1. Kaper JB, Morris JG, Jr., Levine MM. 1995. Cholera. Clin. Microbiol. Rev. 8: 48-86.  https://doi.org/10.1128/CMR.8.1.48
  2. Clemens JD, Nair GB, Ahmed T, Qadri F, Holmgren J. 2017. Cholera. Lancet. 390: 1539-1549.  https://doi.org/10.1016/S0140-6736(17)30559-7
  3. Kim EJ, Lee CH, Nair GB, Kim DW. 2015. Whole-genome sequence comparisons reveal the evolution of Vibrio cholerae O1. Trends Microbiol. 23: 479-489.  https://doi.org/10.1016/j.tim.2015.03.010
  4. Safa A, Nair GB, Kong RY. 2010. Evolution of new variants of Vibrio cholerae O1. Trends Microbiol. 18: 46-54.  https://doi.org/10.1016/j.tim.2009.10.003
  5. Herrington DA, Hall RH, Losonsky G, Mekalanos JJ, Taylor RK, Levine MM. 1988. Toxin, toxin-coregulated pili, and the toxR regulon are essential for Vibrio cholerae pathogenesis in humans. J. Exp. Med. 168: 1487-1492.  https://doi.org/10.1084/jem.168.4.1487
  6. Miller VL, Mekalanos JJ. 1984. Synthesis of cholera toxin is positively regulated at the transcriptional level by toxR. Proc. Natl. Acad. Sci. USA 81: 3471-3475.  https://doi.org/10.1073/pnas.81.11.3471
  7. Childers BM, Klose KE. 2007. Regulation of virulence in Vibrio cholerae: the ToxR regulon. Future Microbiol. 2: 335-344.  https://doi.org/10.2217/17460913.2.3.335
  8. Baek Y, Lee D, Lee J, Yoon Y, Nair GB, Kim DW, et al. 2020. Cholera toxin production in Vibrio cholerae O1 El Tor biotype strains in single-phase culture. Front. Microbiol. 11: 825 
  9. Lee D, Kim EJ, Baek Y, Lee J, Yoon Y, Nair GB, et al. 2020. Alterations in glucose metabolism in Vibrio cholerae serogroup O1 El Tor biotype strains. Sci. Rep. 10: 308. 
  10. Kim EJ, Bae J, Ju Y-J, Ju D-B, Lee D, Son S, et al. 2022. Inactivated Vibrio cholerae strains that express TcpA via the toxT -139F allele induce antibody responses against TcpA. J. Microbiol. Biotechnol. 32: 1396-1405.  https://doi.org/10.4014/jmb.2209.09001
  11. Kim EJ, Yu HJ, Lee JH, Kim JO, Han SH, Yun CH, et al. 2017. Replication of Vibrio cholerae classical CTX phage. Proc. Natl. Acad. Sci. USA 114: 2343-2348.  https://doi.org/10.1073/pnas.1701335114
  12. Ghosh-Banerjee J, Senoh M, Takahashi T, Hamabata T, Barman S, Koley H, et al. 2010. Cholera toxin production by the El Tor variant of Vibrio cholerae O1 compared to prototype El Tor and classical biotypes. J. Clin. Microbiol. 48: 4283-4286.  https://doi.org/10.1128/JCM.00799-10
  13. Shaikh H, Lynch J, Kim J, Excler JL. 2020. Current and future cholera vaccines. Vaccine. 38 Suppl 1: A118-A126.  https://doi.org/10.1016/j.vaccine.2019.12.011
  14. Lopez AL, Gonzales ML, Aldaba JG, Nair GB. 2014. Killed oral cholera vaccines: history, development and implementation challenges. Ther. Adv. Vaccines. 2: 123-136.  https://doi.org/10.1177/2051013614537819
  15. Holmgren J. 2021. An update on cholera immunity and current and future cholera vaccines. Trop. Med. Infect. Dis. 6: 64. 
  16. McCarty JM, Lock MD, Hunt KM, Simon JK, Gurwith M. 2018. Safety and immunogenicity of single-dose live oral cholera vaccine strain CVD 103-HgR in healthy adults age 18-45. Vaccine 36: 833-840.  https://doi.org/10.1016/j.vaccine.2017.12.062
  17. Charles RC, Nakajima R, Liang L, Jasinskas A, Berger A, Leung DT, et al. 2017. Plasma and mucosal immunoglobulin M, immunoglobulin A, and immunoglobulin G responses to the Vibrio cholerae O1 protein immunome in adults with cholera in Bangladesh. J. Infect. Dis. 216: 125-134.  https://doi.org/10.1093/infdis/jix253
  18. Rashidijahanabad Z, Kelly M, Kamruzzaman M, Qadri F, Bhuiyan TR, McFall-Boegeman H, et al. 2022. Virus-like particle display of Vibrio cholerae O-specific polysaccharide as a potential vaccine against cholera. ACS Infect. Dis. 8: 574-583.  https://doi.org/10.1021/acsinfecdis.1c00585
  19. Zareitaher T, Sadat Ahmadi T, Latif Mousavi Gargari S. 2022. Immunogenic efficacy of DNA and protein-based vaccine from a chimeric gene consisting OmpW, TcpA and CtxB, of Vibrio cholerae. Immunology 227: 152190. 
  20. Leitner DR, Lichtenegger S, Temel P, Zingl FG, Ratzberger D, Roier S, et al. 2015. A combined vaccine approach against Vibrio cholerae and ETEC based on outer membrane vesicles. Front. Microbiol. 6: 823. 
  21. Price GA, McFann K, Holmes RK. 2013. Immunization with cholera toxin B subunit induces high-level protection in the suckling mouse model of cholera. PLoS One 8: e57269. 
  22. Jani D, Meena LS, Rizwan-ul-Haq QM, Singh Y, Sharma AK, Tyagi AK. 2002. Expression of cholera toxin B subunit in transgenic tomato plants. Transgenic Res. 11: 447-454.  https://doi.org/10.1023/A:1020336332392
  23. Yuki Y, Nojima M, Hosono O, Tanaka H, Kimura Y, Satoh T, et al. 2021. Oral MucoRice-CTB vaccine for safety and microbiota-dependent immunogenicity in humans: a phase 1 randomised trial. Lancet Microbe. 2: e429-e440.  https://doi.org/10.1016/S2666-5247(20)30196-8
  24. Rhie GE, Jung HM, Kim BS, Mekalanos JJ. 2008. Construction of a Vibrio cholerae prototype vaccine strain O395-N1-E1 which accumulates cell-associated cholera toxin B subunit. Vaccine 26: 5443-5448.  https://doi.org/10.1016/j.vaccine.2008.05.088
  25. Satchell KJ, Jones CJ, Wong J, Queen J, Agarwal S, Yildiz FH. 2016. Phenotypic analysis reveals that the 2010 Haiti cholera epidemic is linked to a hypervirulent strain. Infect. Immun. 84: 2473-2481.  https://doi.org/10.1128/IAI.00189-16
  26. Ghosh P, Sinha R, Samanta P, Saha DR, Koley H, Dutta S, et al. 2019. Haitian variant Vibrio cholerae O1 strains manifest higher virulence in animal models. Front. Microbiol. 10: 111. 
  27. Mudrak B, Kuehn MJ. 2010. Specificity of the type II secretion systems of enterotoxigenic Escherichia coli and Vibrio cholerae for heat-labile enterotoxin and cholera toxin. J. Bacteriol. 192: 1902-1911.  https://doi.org/10.1128/JB.01542-09
  28. World Health O. 2018. Cholera vaccine: WHO position paper, August 2017 - Recommendations. Vaccine 36: 3418-3420.  https://doi.org/10.1016/j.vaccine.2017.09.034
  29. Harris AM, Bhuiyan MS, Chowdhury F, Khan AI, Hossain A, Kendall EA, et al. 2009. Antigen-specific memory B-cell responses to Vibrio cholerae O1 infection in Bangladesh. Infect. Immun. 77: 3850-3856.  https://doi.org/10.1128/IAI.00369-09
  30. Kauffman RC, Bhuiyan TR, Nakajima R, Mayo-Smith LM, Rashu R, Hoq MR, et al. 2016. Single-cell analysis of the plasmablast response to Vibrio cholerae demonstrates expansion of cross-reactive memory B cells. mBio 7: e02021-16. 
  31. Ramamurthy T, Nandy RK, Mukhopadhyay AK, Dutta S, Mutreja A, Okamoto K, et al. 2020. Virulence regulation and innate host response in the pathogenicity of Vibrio cholerae. Front. Cell. Infect. Microbiol. 10: 572096. 
  32. Waldor MK, Mekalanos JJ. 1996. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272: 1910-1914.  https://doi.org/10.1126/science.272.5270.1910
  33. Sanchez J, Medina G, Buhse T, Holmgren J, Soberon-Chavez G. 2004. Expression of cholera toxin under non-AKI conditions in Vibrio cholerae El Tor induced by increasing the exposed surface of cultures. J. Bacteriol. 186: 1355-1361.  https://doi.org/10.1128/JB.186.5.1355-1361.2004
  34. Jonson G, Svennerholm A-M, Holmgren J. 1990. Expression of virulence factors by classical and El Tor Vibrio cholerae in vivo and in vitro. FEMS Microbiol. Lett. 74: 221-228.  https://doi.org/10.1111/j.1574-6968.1990.tb04067.x
  35. DiRita VJ, Neely M, Taylor RK, Bruss PM. 1996. Differential expression of the ToxR regulon in classical and E1 Tor biotypes of Vibrio cholerae is due to biotype-specific control over toxT expression. Proc. Natl. Acad. Sci. USA 93: 7991-7995.  https://doi.org/10.1073/pnas.93.15.7991
  36. Cobaxin M, Martinez H, Ayala G, Holmgren J, Sjoling A, Sanchez J. 2014. Cholera toxin expression by El Tor Vibrio cholerae in shallow culture growth conditions. Microb. Pathog. 66: 5-13.  https://doi.org/10.1016/j.micpath.2013.11.002
  37. Iwanaga M, Yamamoto K, Higa N, Ichinose Y, Nakasone N, Tanabe M. 1986. Culture conditions for stimulating cholera toxin production by Vibrio cholerae O1 El Tor. Microbiol. Immunol. 30: 1075-1083.  https://doi.org/10.1111/j.1348-0421.1986.tb03037.x
  38. Chen WH, Cohen MB, Kirkpatrick BD, Brady RC, Galloway D, Gurwith M, et al. 2016. Single-dose live oral cholera vaccine CVD 103-HgR protects against human experimental infection with Vibrio cholerae O1 El Tor. Clin. Infect. Dis. 62: 1329-1335.  https://doi.org/10.1093/cid/ciw145
  39. Naha A, Mandal RS, Samanta P, Saha RN, Shaw S, Ghosh A, et al. 2020. Deciphering the possible role of ctxB7 allele on higher production of cholera toxin by Haitian variant Vibrio cholerae O1. PLoS Negl. Trop. Dis. 14: e0008128. 
  40. Kim DW, Lenzen G, Page AL, Legrain P, Sansonetti PJ, Parsot C. 2005. The Shigella flexneri effector OspG interferes with innate immune responses by targeting ubiquitin-conjugating enzymes. Proc. Natl. Acad. Sci. USA 102: 14046-14051.  https://doi.org/10.1073/pnas.0504466102
  41. Donnenberg MS, Kaper JB. 1991. Construction of an eae deletion mutant of enteropathogenic Escherichia coli by using a positive-selection suicide vector. Infect. Immun. 59: 4310-4317.  https://doi.org/10.1128/iai.59.12.4310-4317.1991
  42. Chin CS, Sorenson J, Harris JB, Robins WP, Charles RC, Jean-Charles RR, et al. 2011. The origin of the Haitian cholera outbreak strain. N. Engl. J. Med. 364: 33-42.  https://doi.org/10.1056/NEJMoa1012928
  43. Mutreja A, Kim DW, Thomson NR, Connor TR, Lee JH, Kariuki S, et al. 2011. Evidence for several waves of global transmission in the seventh cholera pandemic. Nature 477: 462-465. https://doi.org/10.1038/nature10392