DOI QR코드

DOI QR Code

Stress Granules Inhibit Coxsackievirus B3-Mediated Cell Death via Reduction of Mitochondrial Reactive Oxygen Species and Viral Extracellular Release

  • Ji-Ye Park (BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital) ;
  • Ok Sarah Shin (BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital)
  • Received : 2022.10.17
  • Accepted : 2023.01.03
  • Published : 2023.05.28

Abstract

Stress granules (SGs) are cytoplasmic aggregates of RNA-protein complexes that form in response to various cellular stresses and are known to restrict viral access to host translational machinery. However, the underlying molecular mechanisms of SGs during viral infections require further exploration. In this study, we evaluated the effect of SG formation on cellular responses to coxsackievirus B3 (CVB3) infection. Sodium arsenite (AS)-mediated SG formation suppressed cell death induced by tumor necrosis factor-alpha (TNF-a)/cycloheximide (CHX) treatment in HeLa cells, during which G3BP1, an essential SG component, contributed to the modulation of apoptosis pathways. SG formation in response to AS treatment blocked CVB3-mediated cell death, possibly via the reduction of mitochondrial reactive oxygen species. Furthermore, we examined whether AS treatment would affect small extracellular vesicle (sEV) formation and secretion during CVB3 infection and modulate human monocytic cell (THP-1) response. CVB3-enriched sEVs isolated from HeLa cells were able to infect and replicate THP-1 cells without causing cytotoxicity. Interestingly, sEVs from AS-treated HeLa cells inhibited CVB3 replication in THP-1 cells. These findings suggest that SG formation during CVB3 infection modulates cellular response by inhibiting the release of CVB3-enriched sEVs.

Keywords

Acknowledgement

This research was funded by the Basic Science Research Program of the National Research Foundation of Korea (NRF) by the Ministry of Science, ICT & Future Planning (NRF-2019R1A2C1005961).

References

  1. Protter DSW, Parker R. 2016. Principles and properties of stress granules. Trends Cell Biol. 26: 668-679. https://doi.org/10.1016/j.tcb.2016.05.004
  2. Marcelo A, Koppenol R, de Almeida LP, Matos CA, Nobrega C. 2021. Stress granules, RNA-binding proteins and polyglutamine diseases: too much aggregation? Cell Death Dis. 12: 592.
  3. Wu Y, Zhang Z, Li Y, Li Y. 2021. The regulation of integrated stress response signaling pathway on viral infection and viral antagonism. Front. Microbiol. 12: 814635.
  4. Sin J, Mangale V, Thienphrapa W, Gottlieb RA, Feuer R. 2015. Recent progress in understanding coxsackievirus replication, dissemination, and pathogenesis. Virology 484: 288-304. https://doi.org/10.1016/j.virol.2015.06.006
  5. Wells AI, Coyne CB. 2019. Enteroviruses: A gut-wrenching game of entry, detection, and evasion. Viruses 11: 460.
  6. Wang Y, Gao B, Xiong S. 2014. Involvement of NLRP3 inflammasome in CVB3-induced viral myocarditis. Am. J. Physiol. Heart Circ. Physiol. 307: H1438-1447. https://doi.org/10.1152/ajpheart.00441.2014
  7. Zhai X, Wu S, Lin L, Wang T, Zhong X, Chen Y, et al. 2018. Stress granule formation is one of the early antiviral mechanisms for host cells against coxsackievirus B infection. Virol. Sin. 33: 314-322. https://doi.org/10.1007/s12250-018-0040-3
  8. Fung G, Ng CS, Zhang J, Shi J, Wong J, Piesik P, et al. 2013. Production of a dominant-negative fragment due to G3BP1 cleavage contributes to the disruption of mitochondria-associated protective stress granules during CVB3 infection. PLoS One 8: e79546.
  9. Wu S, Wang Y, Lin L, Si X, Wang T, Zhong X, et al. 2014. Protease 2A induces stress granule formation during coxsackievirus B3 and enterovirus 71 infections. Virol. J. 11: 192.
  10. Thery C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. 2018. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the international society for extracellular vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 7: 1535750.
  11. Sin J, McIntyre L, Stotland A, Feuer R, Gottlieb RA. 2017. Coxsackievirus B escapes the infected cell in ejected mitophagosomes. J. Virol. 91: e01347-17.
  12. Oh SJ, Lim BK, Yun J, Shin OS. 2021. CVB3-mediated mitophagy plays an important role in viral replication via abrogation of interferon pathways. Front. Cell Infect. Microbiol. 11: 704494.
  13. Oh SJ, Gim JA, Lee JK, Park H, Shin OS. 2020. Coxsackievirus B3 infection of human neural progenitor cells results in distinct expression patterns of innate immune genes. Viruses. 12: 325.
  14. Seo SW, Park SK, Oh SJ, Shin OS. 2018. TLR4-mediated activation of the ERK pathway following UVA irradiation contributes to increased cytokine and MMP expression in senescent human dermal fibroblasts. PLoS One 13: e0202323.
  15. Lee JK, Oh SJ, Gim JA, Shin OS. 2022. miR-10a, miR-30c, and miR-451a encapsulated in small extracellular vesicles are prosenescence factors in human dermal fibroblasts. J. Invest. Dermatol. 142: 2570-2579. https://doi.org/10.1016/j.jid.2022.03.032
  16. Oh SJ, Lee EN, Park JH, Lee JK, Cho GJ, Park IH, et al. 2022. Anti-viral activities of umbilical cord mesenchymal stem cell-derived small extracellular vesicles against human respiratory viruses. Front. Cell Infect. Microbiol. 12: 850744.
  17. Annibaldi A, Meier P. 2018. Checkpoints in TNF-induced cell death: Implications in inflammation and cancer. Trends Mol. Med. 24: 49-65. https://doi.org/10.1016/j.molmed.2017.11.002
  18. Jin S, Ray RM, Johnson LR. 2008. TNF-alpha/cycloheximide-induced apoptosis in intestinal epithelial cells requires Rac1-regulated reactive oxygen species. Am. J. Physiol. Gastrointest. Liver Physiol. 294: G928-937. https://doi.org/10.1152/ajpgi.00219.2007
  19. Yang P, Mathieu C, Kolaitis RM, Zhang P, Messing J, Yurtsever U, et al. 2020. G3BP1 Is a tunable switch that triggers phase separation to assemble stress granules. Cell 181: 325-345.e328. https://doi.org/10.1016/j.cell.2020.03.046
  20. Zhai X WS, Lin L, Wang T, Zhong X, Chen Y, Xu W, et al. 2018. Stress granule formation is one of the early antiviral mechanisms for host cells against coxsackievirus B infection. Vriol. Sin. 33: 314-322. https://doi.org/10.1007/s12250-018-0040-3
  21. Zorov DB, Juhaszova M, Sollott SJ. 2014. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 94: 909-950. https://doi.org/10.1152/physrev.00026.2013
  22. Weng X, Zhang X, Lu X, Wu J, Li S. 2018. Reduced mitochondrial response sensitivity is involved in the anti-apoptotic effect of dexmedetomidine pretreatment in cardiomyocytes. Int. J. Mol. Med. 41: 2328-2338. https://doi.org/10.3892/ijmm.2018.3384
  23. Caobi A, Nair M, Raymond AD. 2020. Extracellular vesicles in the pathogenesis of viral infections in humans. Viruses 12: 1200.
  24. Onomoto K, Jogi M, Yoo JS, Narita R, Morimoto S, Takemura A, et al. 2012. Critical role of an antiviral stress granule containing RIG-I and PKR in viral detection and innate immunity. PLoS One 7: e43031.
  25. Kim SS, Sze L, Liu C, Lam KP. 2019. The stress granule protein G3BP1 binds viral dsRNA and RIG-I to enhance interferon-β response. J. Biol. Chem. 294: 6430-6438. https://doi.org/10.1074/jbc.RA118.005868
  26. Yang W, Ru Y, Ren J, Bai J, Wei J, Fu S, et al. 2019. G3BP1 inhibits RNA virus replication by positively regulating RIG-I-mediated cellular antiviral response. Cell Death Dis. 10: 946.
  27. Visser LJ, Langereis MA, Rabouw HH, Wahedi M, Muntjewerff EM, de Groot RJ, et al. 2019. Essential role of enterovirus 2A protease in counteracting stress granule formation and the induction of type I interferon. J. Virol. 93: e00222-19.
  28. Arimoto K, Fukuda H, Imajoh-Ohmi S, Saito H, Takekawa M. 2008. Formation of stress granules inhibits apoptosis by suppressing stress-responsive MAPK pathways. Nat. Cell Biol. 10: 1324-1332. https://doi.org/10.1038/ncb1791
  29. Thedieck K, Holzwarth B, Prentzell MT, Boehlke C, Klasener K, Ruf S, et al. 2013. Inhibition of mTORC1 by astrin and stress granules prevents apoptosis in cancer cells. Cell 154: 859-874. https://doi.org/10.1016/j.cell.2013.07.031
  30. Indo HP, Yen HC, Nakanishi I, Matsumoto K, Tamura M, Nagano Y, et al. 2015. A mitochondrial superoxide theory for oxidative stress diseases and aging. J. Clin. Biochem. Nutr. 56: 1-7. https://doi.org/10.3164/jcbn.14-42
  31. Li J, Ma C, Long F, Yang D, Liu X, Hu Y, et al. 2019. Parkin impairs antiviral immunity by suppressing the mitochondrial reactive oxygen species-Nlrp3 axis and antiviral inflammation. iScience 16: 468-484. https://doi.org/10.1016/j.isci.2019.06.008
  32. Foo J, Bellot G, Pervaiz S, Alonso S. 2022. Mitochondria-mediated oxidative stress during viral infection. Trends Microbiol. 30: 679-692. https://doi.org/10.1016/j.tim.2021.12.011
  33. Sreekanth GP, Panaampon J, Suttitheptumrong A, Chuncharunee A, Bootkunha J, Yenchitsomanus PT, et al. 2019. Drug repurposing of N-acetyl cysteine as antiviral against dengue virus infection. Antiviral. Res. 166: 42-55. https://doi.org/10.1016/j.antiviral.2019.03.011
  34. Hu M, Bogoyevitch MA, Jans DA. 2019. Subversion of host cell mitochondria by RSV to favor virus production is dependent on inhibition of mitochondrial complex I and ROS generation. Cells 8: 1417.
  35. Takahashi M, Higuchi M, Matsuki H, Yoshita M, Ohsawa T, Oie M, et al. 2013. Stress granules inhibit apoptosis by reducing reactive oxygen species production. Mol. Cell. Biol. 33: 815-829. https://doi.org/10.1128/MCB.00763-12