
ABSTRACT

Creating a complex balance between dietary composition, circadian rhythm, and the 
hemostasis control of energy is important for managing diseases. Therefore, we aimed to 
determine the interaction between cryptochrome circadian clocks 1 polymorphism and 
energy-adjusted dietary inflammatory index (E-DII) on high-sensitivity C-reactive protein in 
women with central obesity. This cross-sectional study recruited 220 Iranian women aged 
18–45 with central obesity. The 147-item semi-quantitative food frequency questionnaire 
was used to assess the dietary intakes, and the E-DII score was calculated. Anthropometric 
and biochemical measurements were determined. By polymerase chain response-restricted 
length polymorphism method, cryptochrome circadian clocks 1 polymorphism was assigned. 
Participants were categorized into three groups based on the E-DII score, then categorized 
according to cryptochrome circadian clocks 1 genotypes. The mean and standard deviation 
of age, BMI, and high-sensitivity C-reactive protein (hs-CRP) were 35.61 ± 9.57 years, 30.97 ± 
4.16 kg/m2, and 4.82 ± 5.16 mg/dL, respectively. The interaction of the CG genotype and E-DII 
score had a significant association with higher hs-CRP level compared to GG genotype as the 
reference group (β, 1.19; 95% CI, 0.11–2.27; p value, 0.03). There was a marginally significant 
association between the interaction of the CC genotype and the E-DII score with higher 
hs-CRP level compared to the GG genotype as the reference group (β, 0.85; 95% CI, −0.15 
to 1.86; p value, 0.05). There is probably positive interaction between CG, CC genotypes of 
cryptochrome circadian clocks 1, and E-DII score on the high-sensitivity C-reactive protein 
level in women with central obesity.
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INTRODUCTION

Central obesity refers to the accumulation of excess fat around the abdomen, caused by an 
imbalance between energy intake and energy expenditure [1]. According to a systematic 
review in 2020, the prevalence of central obesity is 41.5% in the world [2]. In Iran, central 
obesity was estimated to be 42.8% and 12.9% among women and men, respectively; which 
shows, Iranian women are more at risk [3]. The interaction between the world's food 
system, environment, and genetic factors has led to a high prevalence of obesity [4]. Obesity 
increases the risk of non-communicable diseases and creates health burdens around the 
world [4,5]. But the ratio of waist to height (WHtR) is a better predictor for chronic disease 
and inflammation than general obesity [6,7]. Because visceral adipose tissue mass-produces 
pro-inflammatory biomarkers more than peripheral ones [8]. Through all environmental 
factors, the diet has a strong effect on inflammation [9] and regulates inflammatory 
responses [10]. The dietary inflammatory index (DII) -a new tool for assessing the 
inflammatory potential of a diet- has an association with inflammatory cytokines, obesity, 
and greater waist circumference (WC) in different populations [11].

Genes related to a circadian rhythm may affect obesity [12] and inflammation [13]. The 
circadian rhythm performed by exposure to light may have an association with central 
obesity. It can work according to the activation of transcription, clock genes suppression, and 
destruction of clock protein [12]. Cryptochrome circadian clocks 1/2 (CRY1/2) are two main 
clock proteins that regulate circadian rhythms and affect energy metabolism [14]. The clock 
gene proteins activate the expression of nuclear receptors like retinoic acid receptor-related 
orphan receptors, as target molecules in the treatment of metabolic disorders and vital 
intermediate nodes between the clock gene and abdominal obesity [15].

Animal studies have shown that the lack of CRY, activates the expression of pro-inflammatory 
cytokines and augments susceptibility to obesity [16]. In vivo and in vitro studies have 
shown creating a complex balance between dietary composition, circadian rhythm, and 
the hemostasis control of energy [17] is important for managing diseases [12]. No study 
has assessed the interaction between CRY1 polymorphism and energy-adjusted dietary 
inflammatory index (E-DII) on high-sensitivity C-reactive protein (hs-CRP) in women with 
central obesity. Therefore, this study has hypothesized that the interaction of a diet with more 
pro-inflammatory potential and CRY1 polymorphism may be associated with a higher level of 
hs-CRP in women with central obesity.

MATERIALS AND METHODS

Participants
This cross-sectional study recruited 220 adult women with central obesity, aged 18 to 45 
years old selected by a multi-stage cluster random sampling method that had been referred 
to health centers in Tehran, in 2017. All measurements related to anthropometry and blood 
samples were done in the school of Nutritional Sciences and Dietetics at Tehran University of 
Medical Sciences (TUMS). The Ethics Commission of Tehran University of Medical Sciences 
approved this study)IR.TUMS.VCR.REC.1398.051.(Participants were informed about the 
study protocol before the study began, and they were asked to complete informed consent. 
The eligibility criteria were BMI 25–40 kg/m2 (being obese or overweight with WHtR > 0.50) 
with good general health. The exclusion criteria for this study were: having a history of 

8

CLINICAL NUTRITION RESEARCH

https://e-cnr.org

https://orcid.org/0000-0003-0231-0478
https://orcid.org/0000-0003-0231-0478
https://e-cnr.org


Interaction CRY1 Polymorphism and E-DII on hsCRP

https://doi.org/10.7762/cnr.2023.12.1.7

cardiovascular disease, cancer, diabetes mellitus, liver, and kidney disease, having chronic 
illnesses affecting their diet, and also those with any significant body weight changes in the 
last 1 year. Also, subjects with daily energy intake < 800 kcal/d or > 4,200 kcal/d [18], addicted 
to alcohol or drugs, smoking, pregnancy, currently lactating, menopause, and regular use of 
medications such as oral contraceptive pills.

Anthropometric measurements
The trained dietitian measured the weight, height, and WC of the participants. An electronic 
scale (Seca725 GmbH& Co., Hamburg, Germany) with an accuracy of 100 g was used to 
measure the weight of participants, while dressed in light clothing and without shoes. The 
height was measured with 0.5 cm precision while the participant's shoulders were in a 
relaxed position and were barefoot. The WC was determined with a tape at the narrowest 
point between the lower ribs and the iliac crest on light clothing without applying pressure to 
the body with a precision of about 0.5 cm. The BMI was calculated by dividing the weight (kg) 
by the height (meters squared). WHtR was determined by dividing the WC by height (cm). 
Waist hip ratio (WHR) was determined by dividing the WC by the hip circumference (cm).

Definition of central obesity
There are some kinds of cut points, WHtR ≥ 0.5 [19,20], WHR ≥ 0.8, and WC ≥ 88 cm [21], 
which are considered central obesity for women [22]. This study used WHtR ≥ 0.5 as the 
cut-off point. Because according to some studies WHtR is a better index for assessing central 
obesity [7,19,20].

Assessment of dietary intake
To assess participant's food intake, the 147-item semi-quantitative food frequency 
questionnaire (FFQ) was used, which had previously proven its validity and reliability [23]. 
This questionnaire includes 147 food items consumed by Iranians, which has a standard size 
serving for each item based on 4 predefined groups, including daily weekly, and monthly 
frequent consumption. Trained assistants complete the questionnaires in face-to-face 
interviews at health centers in Tehran. Then amounts of food intake were converted to grams 
per day, by using household measurements [24]. Nutritionist IV software, (version 7.0; 
N-Squared Computing, Salem, OR, USA) modified for Iranian cuisine, was used to analyze 
the nutrients [25].

Assessment of E-DII
According to Shivappa et al. [26], DII scores consist of 45 food items based on whether the 
concentration of 6 inflammatory biomarkers (CRP, interleukin [IL]-1 beta, IL-10, IL-4, IL-6, 
and tumor necrosis factor-alpha [TNF-α]) increases/decreases or is ineffective, giving +1, 
-1, and zero, respectively. Since not all food items are the same in all types of FFQ, the DII 
score was calculated according to the foods data that were available in our FFQ with some 
changes in the method of Shivappa et al. [26], the same as many previous studies [27]. 
Next, to compute the E-DII of subjects, the dietary data were connected to the regionally 
representative world database, which provided a strong estimate of the mean and standard 
deviation (SD) for each factor. These were used as multipliers to declare an individual’s 
contact relative to the ‘standard global mean’ as a z-score. For each food intake, a z-score 
was obtained by deducting the ‘standard mean’ from the real food parameter assessment 
and dividing it by its SD. Then, to minimalize the influence of ‘right skewing,’ this value 
was changed to a balanced percentile score, then minted by the respective food factor 
inflammatory influence score to attain the participant’s food parameter-specific E-DII score. 
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All of the food-parameter-specific E-DII scores were collected to produce a total E-DII score 
per participant [26]. The calculated E-DII score with 31 corresponding nutrients and food 
items listed in our frequency questionnaire including energy, carbohydrate, protein, fat, 
dietary fiber, n-6 fatty acids, n-3 fatty acids, mono-unsaturated fatty acids, polyunsaturated 
fatty acids, trans-fatty acids, saturated fatty acids, cholesterol, thiamin, riboflavin, niacin, 
Vitamin B-6, folate, vitamin B-12, vitamin A, ß-carotene, Vitamin D, vitamin C, vitamin E, 
zinc, magnesium, selenium, iron, and onion, garlic, caffeine, and tea [25]. A higher E-DII 
indicates a more pro-inflammatory diet.

Measurement of biochemical parameters
Blood samples of participants were collected early morning after 12 hours of fasting at night 
at the Nutrition and the Biochemistry Laboratory of the TUMS School of Nutritional Sciences 
Dietetics. Blood samples were collected in parental pipes having 0.1 EDTA, based on the 
standard protocol in a sitting situation. Serum samples were centrifuged for serum collection 
for 10 minutes at 300 rpm, diluted in 1 ml pipes, and kept at −80°C until the examination. 
We evaluated the serum concentrations of hs-CRP, as a sensitive marker of inflammation, by 
using an immunoturbidimetric assay (Randox laboratories kit, Hitachi LTD, Tokyo, Japan). 
By enzymatic methods using related kits (Pars Azemun, Iran) and an autoanalyzer system, 
serum concentrations of total cholesterol, high-density lipoprotein cholesterol, low-density 
lipoprotein cholesterol, and triglyceride were evaluated. Using the enzymatic colorimetric 
method using glucose oxidase, fasting blood sugar was measured.

Assessment of other variables
The information in the demographic questionnaire which included questions about age, 
marital status, educational level, economic status, and family history of migraine was 
collected by a trained dietitian. Using the International Physical Activity Questionnaire 
(IPAQ), the physical activity (PA) levels of participants were measured. Based on the list of 
daily usual activities in the past year, the frequency, and time spent on it, the levels of PA 
were divided into four categories including light, moderate, high, and very high-intensity 
activities. PA levels were stated as metabolic equivalent hours per week (METs/week).

DNA extraction
Subjects via available deoxyribonucleic acid (DNA) samples from whole blood were assessed 
for the rs2287161. By using Mini Columns (Type G Exgene; GeneAll Biotechnology, Seoul, 
Korea) according to the manufacturer’s protocol, the extraction of Genomic DNA was 
done. Based on the NanoDrop ND-2000 spectrometer, the quality and concentration of 
the extracted DNA extracted were determined. By using the polymerase chain response-
restricted length polymorphism (PCR–RFLP) method, the rs2287161 was genotyped, with 
allele C as major and allele G as minor one. PCR detected the following primers: forward 
5′-GGAACAGTGATTGGCTCTATCT-3′; reverse 5′-GGTCCTCGGTCTCAAGAAG-3′. PCR 
responses in a volume of 20 µL contain 2 µL primers, 1 µL extracted DNA,7 µL distilled water, 
and 10 µL Taq DNA Polymerase Master Mix (Amplicon; Denmark) in a DNA thermocycler. 
In the DNA thermocycler the DNA templates were denatured at 94°C for 4 minutes; 
strengthening include 35 rotations at 94°C, 58°C, and 72°C (each step for 30 seconds), and 
the last extension at 72°C for 7 minutes. Strengthened DNA (10 microliters) was added to 
2 microliters of DRI restriction enzyme (Thermo Fisher Scientific, Waltham, MA, USA) at 
37°C. PCR product electrophoresis was done on the agarose gel. Three segments of possible 
genotypes were obtained. These genotypes were GG (107 bp), GC (107,48 and 226 bp), and 
CC (155 and 226 bp).
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Statistical analysis
All statistical analysis was performed by IBM SPSS version 23.0 (IBM Corp., Armonk, 
NY, USA). Statistical significance was considered as p < 0.05. Normality distribution was 
analyzed by Kolmogorov–Smirnov’s test (p > 0.05). The Hardy-Weinberg Equilibrium and 
comparison of categorical variables were assessed with the χ2 test [28]. Quantitative variables 
were reported as the means and SD and categorical characteristics information were 
reported as numbers and percentages. Comparison of numerical variables between tertiles 
of E-DII or CRY1 genotypes was determined using one-way analysis of variance (ANOVA) 
and analysis of covariance (ANCOVA) for adjusting confounders. Post hoc (Bonferroni) 
analyses, were determined for detecting a significant mean difference of variables among 
tertiles. For comparing categorical variables across tertiles, the χ2 test was used. In order 
to examine the interactions between CRY1 genotypes and E-DII on the hs-CRP level, the 
participants were grouped based on CRY1 genotypes: group 1 with CC genotype, group 2 
with CG genotype, and group 3 with GG genotype. Genotypes were reported based on risk 
allele as cumulative method: code 0 for GG (as the reference group), 1 for GC, and 2 for CC 
genotype then quantitative and categorical variables were assessed. The interaction between 
CRY1 genotypes and E-DII (as a continuous variable) on numerical variables was evaluated 
using generalized linear regression model analysis. Results were presented as beta (β) and 
95% confidence intervals (CIs). In model 1, the interaction between CRY1 genotypes and DII 
was obtained after adjusting the age, physical activity, energy intake, and BMI. Model 2 was 
adjusted further for education and economic status.

RESULTS

Study population characteristics
This cross-sectional study was done on 220 adult women with central obesity by WHtR ≥ 0.5. 
No data was missed. The means and SD of age, BMI, and hs-CRP of participants were 35.61 
(9.57) years, 30.97 (4.16) kg/m2, and 4.82 (5.16) mg/dL, respectively. The range E-DII was 
−3.32 to 3.19 (mean ± SD: 0.19 ± 1.5). The frequencies of CRY1 genotypes including CC, CG, 
and GG were 32.2%, 41.8%, and 26%, respectively.

Study the participant characteristics between tertiles of E-DII
The sociodemographic characteristics of participants among tertiles of E-DII were presented 
in Table 1. The values of p for all variables were reported before the adjustment in the crude 
model and after the adjustment with potential confounders like age, physical activity, and 
energy intake. The WHR (p = 0.04) and physical activity mean (p = 0.006) were lower in the 
top tertile of the E-DII compared to the lowest tertile. The triglyceride values (p = 0.04) were 
higher in the top tertile of the E-DII compared to the lowest tertile. There was a significant 
association across tertiles of E-DII and economic status (p = 0.01), university education (p = 
0.01), marriage (p = 0.01). There were no significant differences across tertiles of the E-DII in 
terms of other variables in this table. Post hoc (Bonferroni) analysis revealed physical activity 
has a significant difference between the first and third tertiles and the first with second 
tertiles. Also, WHR and triglyceride have a difference between first and third tertiles and first 
with second tertiles, respectively.

Study the participant characteristics between genotypes of CRY1
The comparison of participant characteristics based on CRY1 genotypes was presented in 
Table 2. The values of p were reported before and after adjusting the age, BMI, physical activity, 
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and energy intake. The model was adjusted for age, physical activity, energy intake, and BMI. As 
well as, the amount of WHtR was more in the top tertiles of the CRY1 genotypes (CC) compared 
to the lowest tertile (GG) (mean ± SD: 0.59 ± 0.01, p = 0.02). Post hoc (Bonferroni) analysis 
revealed WHtR had a significant difference between first and third tertiles.

Study the values of the hs-CRP level of participants
The level of hs-CRP among E-DII tertiles and CRY1 genotypes in women with central obesity 
was presented in Table 3. The values of p were reported before and after adjusting the potential 
confounders. Model 1 was adjusted for age, physical activity, energy intake, and BMI. Model 2 
was adjusted further for education and economic status. Model 2 showed that CRY1 genotypes 
have a significant association with hs-CRP level (mean ± SD: 3.25 ± 0.78, p = 0.03). Post hoc 
(Bonferroni) analysis revealed the values of hs-CRP were higher in the CG compared to the GG.
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Table 1. Characteristics of study population among tertiles of E-DII* in women with central obesity
Variables E-DII tertiles p value† p value‡

T1 (n = 78) < −0.436 T2 (n = 64) −0.436 to 0.884 T3 (n = 78) 0.884 <
Age (yr) 36.31 ± 1.30 35.45 ± 1.42 32.26 ± 1.33 0.075 0.086
PA (MET-minutes/wk) 1,440.50 ± 167.44a,b 780.50 ± 185.79b 717.78 ± 175.56a 0.007 0.006
Anthropometric variables

Weight (kg) 82.27 ± 3.20 78.44 ± 3.52 75.78 ± 3.34 0.640 0.381
Height (cm) 161.39 ± 1.53 160.95 ± 1.68 161.48 ± 1.59 0.163 0.974
WC (cm) 88.15 ± 2.53 91.64 ± 2.78 97.18 ± 2.64 0.262 0.059
HC (cm) 111.30 ± 2.19 112.20 ± 2.40 113.71 ± 2.28 0.607 0.875
BMI (kg/m2) 28.43 ± 1.01 30.28 ± 1.11 31.91 ± 1.05 0.104 0.246
WHR 0.85 ± 0.01a 0.81 ± 0.02 0.79 ± 0.01a 0.025 0.042
WHtR 0.60 ± 0.01 0.57 ± 0.01 0.54 ± 0.01 0.133 0.052

Biochemical variables
FBS (mg/dL) 88.52 ± 1.12 87.57 ± 1.06 86.63 ± 1.12 0.169 0.498
Total cholesterol (mg/dL) 184.76 ± 4.21 186.17 ± 4.01 185.33 ± 4.22 0.687 0.971
Triglyceride (mg/dL) 111.46 ± 8.40b 139.51 ± 8.00b 112.67 ± 8.41 0.025 0.046
HDL-C (mg/dL) 48.31 ± 1.29 45.44 ± 1.23 45.96 ± 1.29 0.299 0.246
LDL-C (mg/dL) 97.03 ± 2.85 96.23 ± 2.71 92.83 ± 2.85 0.342 0.543

Categorical variables 0.017 0.019
Economic status
Low level 41 (47.1) 22 (25.3) 24 (27.6)
Moderate level 58 (31.9) 61 (33.5) 63 (34.6)
High level 26 (24.3) 42 (39.3) 39 (36.4)

Education level 0.014 0.002
Illiterate 1 (33.3) 2 (66.7) 0 (0.0)
Under diploma 15 (57.7) 7 (26.9) 4 (15.4)
Diploma 34 (39.1) 27 (31.0) 26 (29.9)
Master and higher 28 (26.9) 28 (26.9) 48 (46.2)

Marital status 0.013 0.752
Single 59 (36.4) 54 (33.3) 49 (30.2)
Married 19 (32.8) 10 (17.2) 29 (50.0)

CRY1 Genotype 0.734 0.741
GG 17 (31.5) 14 (25.9) 23 (42.6)
CG 33 (38.4) 26 (30.2) 27 (31.4)
CC 25 (37.3) 20 (29.9) 22 (32.8)

Data are presented as a number (%) for categorical variables and mean ± standard error for continuous variables. GG genotype has 0 risk allele. CG genotype 
has one risk allele. CC genotype has two risk alleles. The one-way analysis of variance and the χ2 test, respectively, were used for the comparison of continuous 
and categorical variables among tertiles of the E-DII. p < 0.05 was statistically significant. According to ANOVA& ANCOVA, post hoc (Bonferroni) analysis was 
done. Two letters a and b are used to present a significant difference between tertiles in pairs in post hoc (Bonferroni) analysis for ANOVA& ANCOVA. Letter a 
used to present a significant difference between the first and third tertile. Letter b is used to present a significant difference between the first and second tertile. 
p < 0.05 is significant, and p = 0.05–0.07 consider marginally significant. The bold-faced values are significant.
E-DII, energy-adjusted dietary inflammatory index; T, tertile; PA, physical activity; WC, waist circumference; HC, hip circumference; BMI, body mass index; WHR, 
waist-hip ratio; WHtR, waist-hight ratio; FBS, fasting blood glucose; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol.
*Dietary inflammatory index adjusted by energy intake; †p value: obtained from ANOVA; ‡p value: obtain from ANCOVA; adjusted for age, physical activity, and 
energy intake.
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The interaction of cry1 genotypes and E-DII on hs-CRP
Interaction between CRY1 genotypes and E-DII on the level of hs-CRP using a generalized 
linear model was reported in Table 4. Model 1 was adjusted for age, physical activity, 
energy intake, and BMI. Model 2 was adjusted further for education and economic status. 
Interaction between the E-DII score and CG in comparison with the reference group (GG) 
had significant association with higher hs-CRP level, in the crude model (β, 1.30; 95% CI, 
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Table 2. Participant characteristics between genotypes of CRY1 in women with central obesity
Variables CRY1 genotypes p value* p value†

GG (n = 54) CG (n = 87) CC (n = 67)
Age (yr) 34.63 ± 1.01 36.25 ± 0.88 37.51 ± 0.99 0.07 0.13
PA (MET-minutes/wk) 837.84 ± 268.00 1,259.70 ± 233.67 1,592.26 ± 263.30 0.19 0.13
Anthropometric measurements

Weight (kg) 78.68 ± 0.87 78.37 ± 0.86b 80.27 ± 0.97b 0.04 0.32
Height (cm) 161.13 ± 0.86 161.02 ± 0.85 162.37 ± 0.96 0.31 0.53
WC (cm) 94.66 ± 1.52 95.05 ± 1.51 94.24 ± 1.69 0.05 0.44
HC (cm) 112.21 ± 0.69 112.08 ± 0.69 113.43 ± 0.77 0.05 0.39
BMI (kg/m2) 30.62 ± 0.46a 30.25 ± 0.40 31.32 ± 0.45a 0.04 0.21
WHR 0.84 ± 0.01 0.84 ± 0.01 0.84 ± 0.01 0.91 0.19
WHtR 0.57 ± 0.00a 0.59 ± 0.00 0.59 ± 0.01a 0.02 0.02

Blood parameters
FBS (mg/dL) 86.40 ± 1.44 86.01 ± 1.42 88.34 ± 1.60 0.59 0.53
Cholesterol (mg/dL) 190.76 ± 5.70 183.46 ± 5.66 181.73 ± 6.35 0.95 0.52
TG (mg/dL) 124.65 ± 12.18 119.01 ± 12.09 126.31 ± 13.57 0.62 0.91
HDL-C (mg/dL) 46.42 ± 1.86 49.44 ± 1.85 43.09 ± 2.08 0.17 0.06
LDL-C (mg/dL) 90.33 ± 3.93 93.88 ± 3.90 91.75 ± 4.38 0.97 0.81

Categorical variables
Economic status 0.01 0.39

Low level 16 (28.6) 22 (39.3) 18 (32.1)
Moderate level 27 (27.6) 49 (50.0) 22 (22.4)
High level 11 (21.2) 15 (28.8) 26 (50.0)

Education 0.74 0.77
Illiterate 2 (66.7) 1 (33.3) 0 (0.0)
Under diploma 7 (29.2) 10 (41.7) 7 (29.2)
Diploma 20 (23.8) 37 (44.0) 27 (32.1)
Master and upper 25 (25.8) 39 (40.2) 33 (34.0)

Marital status 0.51 0.48
Single 20 (31.3) 25 (39.1) 19 (29.7)
Married 34 (23.6) 62 (43.1) 48 (33.3)

Data are presented as a number (%) for categorical variables and mean ± standard error for continuous variables. According to ANOVA& ANCOVA, post hoc 
(Bonferroni) analysis was done. Letters a is used to present a significant difference between genotypes in pairs in Post hoc (Bonferroni) analysis for ANOVA& 
ANCOVA. Letter a used to present a significant difference between the GG and CC. Letters b is used to present a significant difference between genotypes in 
pairs in Post hoc (Bonferroni) analysis for ANOVA. Letter b was used to present a significant difference between the CC and CG. p < 0.05 is significant, and p = 
0.05–0.07 consider marginally significant. The bold-faced values are significant.
CRY1, cryptochrome circadian clocks 1; PA, physical activity; WC: waist circumference, HC: hip circumference, BMI, body mass index; WHR, waist-hip ratio; 
WHtR, waist-hight ratio; FBS, fasting blood glucose; TG, triglyceride; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; 
hs-CRP, high-sensitivity C-reactive protein.
*p value: obtain from ANOVA; †p value: obtain from ANCOVA; adjusted for age, BMI, physical activity, and energy intake.

Table 3. The level of high-sensitivity C-reactive protein (mg/dL) among E-DII tertiles and CRY1 genotypes in women with central obesity
Models E-DII tertile CRY1 genotypes

T1 (n = 78) 
 < −0.436

T2 (n = 64)  
−0.436 to 0.884

T3 (n = 78) 
0.884 <

p value* p value† GG (n = 54) CG (n = 87) CC (n = 67) p value* p value†

Crude 4.26 ± 4.80 5.77 ± 5.10 4.55 ± 5.55 0.46 4.13 ± 3.76 3.96 ± 4.11 4.13 ± 3.76 0.47
Model 1 4.08 ± 1.03 6.18 ± 1.01 4.54 ± 0.95 0.32 3.64 ± 0.68 3.92 ± 0.68 3.64 ± 0.68 0.48
Model 2 4.11 ± 0.97 5.90 ± 0.95 5.03 ± 0.91 0.40 3.21 ± 0.77b 3.76 ± 0.78b 3.25 ± 0.78 0.03
Model 1: adjusted for age, physical activity, energy intake, and BMI. Model 2: further adjustment for education and economic status. p < 0.05 is significant, and 
p = 0.05–0.07 consider marginally significant. The bold-faced values are significant.
E-DII, energy-adjusted dietary inflammatory index; CRY1, cryptochrome circadian clocks 1; T, tertile.
*p value: obtained from ANOVA; †p value: obtain from ANCOVA.
Letter b is used to present a significant difference between the GG and CG of CRY1 genotypes in pairs in Post hoc (Bonferroni) analysis.
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0.23–2.36; p = 0.01), model 1 (β, 1.19; 95% CI, 0.11–2.27; p = 0.03), and model 2 (β, 1.21; 
95% CI, 0.15–2.40; p = 0.04). The interaction between increasing of E-DII score and CC in 
comparison with the reference group (GG) had a marginally significant association with 
a higher level of hs-CRP, before the adjustment (β, 0.95; 95% CI, −0.04 to 1.94; p = 0.06). 
There was a marginally significant interaction between the E-DII score and CC in comparison 
with the reference group (GG) on the level of hs-CRP after adjusting the potential 
confounders such as age, physical activity, energy intake, and BMI (β, 0.85; 95% CI, −0.15 to 
1.86; p = 0.05). In model 2 with further adjustment for education and economic status, the 
same results of model 1 were obtained. No other significant relation was seen in Table 4. The 
interaction between CRY1 genotypes and E-DII adherence on the level of hs-CRP was shown 
in the crude model in Figure 1.

14

CLINICAL NUTRITION RESEARCH

https://e-cnr.org

Table 4. Interaction between E-DII and polymorphism of CRY1 gene on high-sensitivity C-reactive protein levels in 
women with central obesity
Genotypes*E-DII β 95% CI p value
Crude model

CC*E-DII 0.95 −0.04 to 1.94 0.06
CG*E-DII 1.30 0.23 to 2.36 0.01
GG*E-DII* Ref - -

Model 1
CC*E-DII 0.85 −0.15 to 1.86 0.05
CG*E-DII 1.19 0.11 to 2.27 0.03
GG*E-DII* Ref - -

Model 2
CC*E-DII 0.85 −0.15 to 1.88 0.05
CG*E-DII 1.21 0.15 to 2.40 0.04
GG*E-DII Ref - -

Data were obtained from the Generalized Linear Models (GLM) method. The C allele is considered a risk allele. GG 
genotype has 0 risk allele. CG genotype has one and the CC genotype have two risk allele. Model 1: adjusted for 
age, physical activity, energy intake, and BMI. Model 2: further adjustment for education and economic status. p 
< 0.05 is significant, and p = 0.05–0.07 consider marginally significant. The bold-faced values are significant.
E-DII, energy-adjusted dietary inflammatory index; CRY1, cryptochrome circadian clocks 1.
*Reference. GG genotype is considered as a reference.

M
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n 
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-C
RP

CRY1 genotypes
GG

0

2

4

6

CG CC

E-DII adherence
Low adherence
High adherence

Figure 1. Interaction between CRY1 genotypes (CC and CG) and E-DII on the mean of hsCRP level in crude model. 
GG genotype is a reference group. 
p value for CC and CG genotype are respectively; 0.22 and 0.89. p value for E-DII adherence: 0.14. p value for 
interaction between E-DII and CC genotype: 0.06. p value for interaction between E-DII and CG genotype: 0.01. 
hs-CRP, high-sensitivity C-reactive protein; CRY1, cryptochrome circadian clocks 1; E-DII, energy-adjusted dietary 
inflammatory index.
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DISCUSSION

This cross-sectional study examined the interaction between CRY1 polymorphism and 
dietary inflammatory index on the hs-CRP level in women with central obesity. Our results 
indicated the interaction between the CG genotype, CC genotype, and the DII score on the 
level of hs-CRP was positively significant. Generally, women with central obesity and risk 
allele (C) of the CRY1 genotype, also higher adherence to DII had a higher level of hs-CRP.

The circadian clock may affect the function and activity of the immune system, inflammation 
[29], and obesity [12]. Also, the dietary inflammatory index is used for assessing the 
inflammatory effects of diet [30]. Inflammation is a common cause of chronic diseases 
[31], and to the best of our knowledge, no study has investigated the interaction between 
CRY1 polymorphism and DII on the hs-CRP level in women with central obesity. Therefore, 
assessing this interaction seems important.

The present study revealed the interaction of CG genotype, CC genotype, and DII score has a 
significant association with higher levels of hs-CRP. No study has assessed this association. 
But as we know, increasing consumption of fruits and vegetables [32-34], nuts [35], legumes 
[36], and low-fat dairy [35] has a significant association with a lower level of hs-CRP. However, 
in higher DII scores intake of the aforementioned foods, decreases; and the intake of saturated 
fatty acids has increased [37], therefore, the level of hs-CRP is higher [38]. But the results 
of the studies are inconsistent. Some studies presented a significant association between 
DII, central obesity, and inflammation [39-41]; other ones have reported no significant 
association between DII and central obesity and inflammation [42,43]. On the other hand, 
diet composition affects circadian function. It is unclear how diet composition can affect 
circadian genes, but several observations show a possible mechanism is epigenetic. It has 
been demonstrated that consumption of a Western diet (a diet with more pro-inflammatory 
potential), can affect circadian genes and encode important metabolic settings of genes. In 
line with our results, a previous study showed that high fat and high carbohydrate diet alters 
the peripheral rhythmic of inflammatory biomarkers secretion and the serum levels of hs-CRP 
and core clock gene expression which induced obesity in a mouse model [44]. This kind of diet 
decreases NAD+ levels due to reducing nicotinamide phosphoribosyl transferase expression 
[45] and diminishes acetyl-CoA content [46] while elevating long-chain free fatty acids 
that increase activation of the deacetylase activity of SIRT6 [47], which affects the circadian 
metabolic processes. Another epigenetic setting is the ketone body Beta-hydroxybutyrate, 
which contributes to a circadian regulator of lipid metabolism [48]. A high protein and 
ketogenic diet lead to an increase in the expression of some of the circadian genes too [49,50]. 
High-fat diet-induced obesity destroyed the daily rhythm of circadian genes and disrupts 
microglial immune metabolic functions [51]. Clock genes via setting transcription of major 
genes for lipid metabolism enzymes, such as hormone-sensitive lipase (HSL), and triglyceride 
lipase (Atgl) in white adipose tissue; have a vital role in energy metabolism and obesity [52]. 
As known, the secretion of many pro-inflammatory cytokines has a diurnal variation in which 
its peak levels are in the rest phase (dark phase) in humans [53]. Also, cytokine receptors can 
express rhythmically [54]. According to evidence, a bidirectional setting is between CRY clock 
genes and TNF-a, CRY1 can decrease the activation rate of the TNF-a gene directly [55]. TNF-a 
might be involved in the expression of the time-dependent setting of the clock gene [56] and 
can affect the suprachiasmatic nucleus (SCN) [57]. SCN is connected to neural pathways 
setting the immune response and has a close relationship with the paraventricular nucleus 
and the arcuate nucleus which have a connection to peripheral circadian entrainment and 
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immune tasks [58]. Indeed, the ablation of CRY1 increases pro-inflammatory cytokines in 
a cell-autonomous way. CRY1 protein fixes adenylyl cyclase and restricts cAMP production. 
Lack of CRY1 protein might increase cAMP and elevate PKA activation, as a result, NF-κ B 
becomes active via phosphorylation of p65 at S276 [16]. According to the above-mentioned 
mechanisms, it is possible to clarify the findings.

This study has shown that by increasing the number of the risk allele (C) in genotypes of CRY1, 
and higher adherence to DII, the level of hs-CRP was significantly higher in women with 
central obesity. A study on polymorphisms in circadian genes with abdominal obesity showed 
significant associations between haplotypes of CG for CLOCK rs10002541 and rs4864546 with 
abdominal obesity [15]. Also, an investigation on mice showed that mice deficient in CRY1 
inhibits high-fat diet (HFD)-induced obesity, therefore CRY1 had an important role in central 
obesity [59]. This gene has an association with inflammation likely via relation to NF-κB and 
cAMP/PKA pathways [60]. Takahashi et al. [61] reported that the circadian clocks adjust many 
facets of the immune system, therefore disturbance of them leads to various inflammatory-
related diseases and increased blood inflammatory factors. Several studies reported that the 
CRY gene could have a robust relationship with inflammation [16,60,62].

Strengths of the recent study were: data collection and measurements were done by 
a dietitian, the use of questionnaires with proven validity and reliability, therefore all 
measurements were accurate. This study reported novel findings regarding the interaction 
between the dietary inflammatory index and CRY1 gene variants on the level of hs-CRP 
and central obesity. Some limitations have been considered. Because of the cross-sectional 
study design, the temporal sequence and causal relationship could not be determined. All 
subjects included in this study were Iranians therefore, the results of this study might not 
be generalizable to people all over the world. Also, we recurred only women in this study 
therefore, the results of this study might not be generalizable to all members of society. The 
sample size of this study was relatively small. Using the FFQ questionnaire to obtain data 
on the dietary intakes of participants depends on the memory of subjects and could create 
an error in our results. The measurement error and classification of subjects could not be 
removed from the study. Despite adjusting several potential confounders in this study, the 
effects of the remaining distortions were uncontrollable.

There is probably positive interaction between CG, CC genotypes of CRY1, and E-DII score on 
the level of hs-CRP in women with central obesity. Further studies with prospective designs 
on specific populations in this field are suggested.
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