DOI QR코드

DOI QR Code

In Vivo Stem Cell Imaging Principles and Applications

  • Seongje Hong (Department of Anatomy, College of Medicine, Chung-Ang University) ;
  • Dong-Sung Lee (Department of Life Sciences, University of Seoul) ;
  • Geun-Woo Bae (Department of Anatomy, College of Medicine, Chung-Ang University) ;
  • Juhyeong Jeon (Department of Anatomy, College of Medicine, Chung-Ang University) ;
  • Hak Kyun Kim (Department of Life Science, Chung-Ang University) ;
  • Siyeon Rhee (Stanford Cardiovascular Institute, Stanford University School of Medicine) ;
  • Kyung Oh Jung (Department of Anatomy, College of Medicine, Chung-Ang University)
  • 투고 : 2023.04.15
  • 심사 : 2023.07.21
  • 발행 : 2023.11.30

초록

Stem cells are the foundational cells for every organ and tissue in our body. Cell-based therapeutics using stem cells in regenerative medicine have received attracting attention as a possible treatment for various diseases caused by congenital defects. Stem cells such as induced pluripotent stem cells (iPSCs) as well as embryonic stem cells (ESCs), mesenchymal stem cells (MSCs), and neuroprogenitors stem cells (NSCs) have recently been studied in various ways as a cell-based therapeutic agent. When various stem cells are transplanted into a living body, they can differentiate and perform complex functions. For stem cell transplantation, it is essential to determine the suitability of the stem cell-based treatment by evaluating the origin of stem, the route of administration, in vivo bio-distribution, transplanted cell survival, function, and mobility. Currently, these various stem cells are being imaged in vivo through various molecular imaging methods. Various imaging modalities such as optical imaging, magnetic resonance imaging (MRI), ultrasound (US), positron emission tomography (PET), and single-photon emission computed tomography (SPECT) have been introduced for the application of various stem cell imaging. In this review, we discuss the principles and recent advances of in vivo molecular imaging for application of stem cell research.

키워드

과제정보

This research was supported by the Chung-Ang University Research Grants in 2021 to KOJ. This research was also supported by 2022 Advanced Facility Fund of the University of Seoul to DSL.

참고문헌

  1. Mason C, Dunnill P. A brief definition of regenerative medicine. Regen Med 2008;3:1-5
  2. Mahla RS. Stem cells applications in regenerative medicine and disease therapeutics. Int J Cell Biol 2016;2016:6940283
  3. Leferink AM, Chng YC, van Blitterswijk CA, Moroni L. Distribution and viability of fetal and adult human bone marrow stromal cells in a biaxial rotating vessel bioreactor after seeding on polymeric 3D additive manufactured scaffolds. Front Bioeng Biotechnol 2015;3:169
  4. Gubareva EA, Sjoqvist S, Gilevich IV, et al. Orthotopic transplantation of a tissue engineered diaphragm in rats. Biomaterials 2016;77:320-335
  5. Garzon I, Perez-Kohler B, Garrido-Gomez J, et al. Evaluation of the cell viability of human Wharton's jelly stem cells for use in cell therapy. Tissue Eng Part C Methods 2012;18:408-419
  6. Thompson PA, Perera T, Marin D, et al. Double umbilical cord blood transplant is effective therapy for relapsed or refractory Hodgkin lymphoma. Leuk Lymphoma 2016;57:1607-1615
  7. Boehm-Sturm P, Mengler L, Wecker S, Hoehn M, Kallur T. In vivo tracking of human neural stem cells with 19F magnetic resonance imaging. PLoS One 2011;6:e29040
  8. Hong H, Yang Y, Zhang Y, Cai W. Non-invasive cell tracking in cancer and cancer therapy. Curr Top Med Chem 2010;10:1237-1248
  9. Wang L, Maslov K, Wang LV. Single-cell label-free photoacoustic flowoxigraphy in vivo. Proc Natl Acad Sci U S A 2013;110:5759-5764
  10. Murakami T, Chun N. Bioluminescent imaging and organ-specific metastasis of human cancer cells [Internet]. Bellingham: The International Society for Optics and Photonics (SPIE); 2009 Dec 17 [cited 2023 Jun 1]. Available from: https://spie.org/news/2501-bioluminescent-imagingand-organ-specific-metastasis-of-human-cancer-cells?SSO=1
  11. Iwano S, Sugiyama M, Hama H, et al. Single-cell bioluminescence imaging of deep tissue in freely moving animals. Science 2018;359:935-939
  12. Herynek V, Turnovcova K, Galisova A, et al. Manganesezinc ferrites: safe and efficient nanolabels for cell imaging and tracking in vivo. ChemistryOpen 2019;8:155-165
  13. Man F, Lim L, Volpe A, et al. In vivo PET tracking of 89Zr-Labeled Vγ9Vδ2 T cells to mouse xenograft breast tumors activated with liposomal alendronate. Mol Ther 2019;27:219-229
  14. Kircher MF, Gambhir SS, Grimm J. Noninvasive cell-tracking methods. Nat Rev Clin Oncol 2011;8:677-688
  15. Youn H, Hong KJ. In vivo non invasive molecular imaging for immune cell tracking in small animals. Immune Netw 2012;12:223-229
  16. Concilio SC, Russell SJ, Peng KW. A brief review of reporter gene imaging in oncolytic virotherapy and gene therapy. Mol Ther Oncolytics 2021;21:98-109
  17. Martelli C, Lo Dico A, Diceglie C, Lucignani G, Ottobrini L. Optical imaging probes in oncology. Oncotarget 2016;7:48753-48787
  18. Michalet X, Pinaud FF, Bentolila LA, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005;307:538-544
  19. Kalchenko V, Shivtiel S, Malina V, et al. Use of lipophilic near-infrared dye in whole-body optical imaging of hematopoietic cell homing. J Biomed Opt 2006;11:050507
  20. Seleverstov O, Zabirnyk O, Zscharnack M, et al. Quantum dots for human mesenchymal stem cells labeling. A size-dependent autophagy activation. Nano Lett 2006;6:2826-2832
  21. Lin S, Xie X, Patel MR, et al. Quantum dot imaging for embryonic stem cells. BMC Biotechnol 2007;7:67
  22. Ruan J, Song H, Li C, et al. DiR-labeled embryonic stem cells for targeted imaging of in vivo gastric cancer cells. Theranostics 2012;2:618-628
  23. Lassailly F, Griessinger E, Bonnet D. "Microenvironmental contaminations" induced by fluorescent lipophilic dyes used for noninvasive in vitro and in vivo cell tracking. Blood 2010;115:5347-5354
  24. Sun S, Chen G, Xu M, Qiao Y, Zheng S. Differentiation and migration of bone marrow mesenchymal stem cells transplanted through the spleen in rats with portal hypertension. PLoS One 2013;8:e83523.
  25. Akhan E, Tuncel D, Akcali KC. Nanoparticle labeling of bone marrow-derived rat mesenchymal stem cells: their use in differentiation and tracking. Biomed Res Int 2015;2015:298430
  26. Hu SL, Lu PG, Zhang LJ, et al. In vivo magnetic resonance imaging tracking of SPIO-labeled human umbilical cord mesenchymal stem cells. J Cell Biochem 2012;113:1005-1012
  27. Zare S, Mehrabani D, Jalli R, et al. MRI-tracking of dental pulp stem cells in vitro and in vivo using dextran-coated superparamagnetic iron oxide nanoparticles. J Clin Med 2019;8:1418
  28. Pang P, Wu C, Gong F, et al. Nanovector for gene transfection and MR imaging of mesenchymal stem cells. J Biomed Nanotechnol 2015;11:644-656
  29. Kim TH, Kim JK, Shim W, Kim SY, Park TJ, Jung JY. Tracking of transplanted mesenchymal stem cells labeled with fluorescent magnetic nanoparticle in liver cirrhosis rat model with 3-T MRI. Magn Reson Imaging 2010;28:1004-1013
  30. Walczak P, Kedziorek DA, Gilad AA, Lin S, Bulte JW. Instant MR labeling of stem cells using magnetoelectroporation. Magn Reson Med 2005;54:769-774
  31. Zhou XY, Tay ZW, Chandrasekharan P, et al. Magnetic particle imaging for radiation-free, sensitive and high-contrast vascular imaging and cell tracking. Curr Opin Chem Biol 2018;45:131-138
  32. Du Y, Lai PT, Leung CH, Pong PW. Design of superparamagnetic nanoparticles for magnetic particle imaging (MPI). Int J Mol Sci 2013;14:18682-18710
  33. Zheng B, von See MP, Yu E, et al. Quantitative magnetic particle imaging monitors the transplantation, biodistribution, and clearance of stem cells in vivo. Theranostics 2016;6:291-301
  34. Sehl OC, Makela AV, Hamilton AM, Foster PJ. Trimodal cell tracking in vivo: combining iron- and fluorine-based magnetic resonance imaging with magnetic particle imaging to monitor the delivery of mesenchymal stem cells and the ensuing inflammation. Tomography 2019;5:367-376
  35. Wang Q, Ma X, Liao H, et al. Artificially engineered cubic iron oxide nanoparticle as a high-performance magnetic particle imaging tracer for stem cell tracking. ACS Nano 2020;14:2053-2062
  36. Uenomachi M, Takahashi M, Shimazoe K, et al. Simultaneous in vivo imaging with PET and SPECT tracers using a Compton-PET hybrid camera. Sci Rep 2021;11:17933
  37. Tong L, Zhao H, He Z, Li Z. Current perspectives on molecular imaging for tracking stem cell therapy. In: Erondu OF, editor. Medical Imaging in Clinical Practice. InTech; 2013. 63-79
  38. Jiang W, Chalich Y, Deen MJ. Sensors for positron emission tomography applications. Sensors (Basel) 2019;19:5019
  39. Kapoor V, McCook BM, Torok FS. An introduction to PET-CT imaging. Radiographics 2004;24:523-543
  40. Cook GJ, Wegner EA, Fogelman I. Pitfalls and artifacts in 18FDG PET and PET/CT oncologic imaging. Semin Nucl Med 2004;34:122-133
  41. Nose N, Nogami S, Koshino K, et al. [18F]FDG-labelled stem cell PET imaging in different route of administrations and multiple animal species. Sci Rep 2021;11:10896
  42. Yao M, Shi X, Zuo C, et al. Engineering of SPECT/photoacoustic imaging/antioxidative stress triple-function nanoprobe for advanced mesenchymal stem cell therapy of cerebral ischemia. ACS Appl Mater Interfaces 2020;12:37885-37895
  43. Wang J, Jokerst JV. Stem cell imaging: tools to improve cell delivery and viability. Stem Cells Int 2016;2016:9240652
  44. Zaw Thin M, Allan H, Bofinger R, et al. Multi-modal imaging probe for assessing the efficiency of stem cell delivery to orthotopic breast tumours. Nanoscale 2020;12:16570-16585
  45. Chen F, Jokerst JV. Stem cell tracking with nanoparticle-based ultrasound contrast agents. Methods Mol Biol 2020;2126:141-153
  46. Abou-Elkacem L, Bachawal SV, Willmann JK. Ultrasound molecular imaging: moving toward clinical translation. Eur J Radiol 2015;84:1685-1693
  47. James ML, Gambhir SS. A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev 2012;92:897-965
  48. Xu C, Feng Q, Ning P, Li Z, Qin Y, Cheng Y. Recent advances on nanoparticle-based imaging contrast agents for in vivo stem cell tracking. Mat Matters 2021;16:2
  49. Chen F, Ma M, Wang J, et al. Exosome-like silica nanoparticles: a novel ultrasound contrast agent for stem cell imaging. Nanoscale 2017;9:402-411
  50. Qi S, Zhang P, Ma M, et al. Cellular internalization-induced aggregation of porous silicon nanoparticles for ultrasound imaging and protein-mediated protection of stem cells. Small 2019;15:e1804332
  51. Gong Z, He Y, Zhou M, et al. Ultrasound imaging tracking of mesenchymal stem cells intracellularly labeled with biosynthetic gas vesicles for treatment of rheumatoid arthritis. Theranostics 2022;12:2370-2382
  52. Gawne PJ, Man F, Blower PJ, T M de Rosales R. Direct cell radiolabeling for in vivo cell tracking with PET and SPECT imaging. Chem Rev 2022;122:10266-10318
  53. Kang JH, Chung JK. Molecular-genetic imaging based on reporter gene expression. J Nucl Med 2008;49 Suppl 2:164S-179S
  54. Muller-Taubenberger A. Application of fluorescent protein tags as reporters in live-cell imaging studies. Methods Mol Biol 2006;346:229-246
  55. Chudakov DM, Lukyanov S, Lukyanov KA. Fluorescent proteins as a toolkit for in vivo imaging. Trends Biotechnol 2005;23:605-613
  56. Ke CC, Liu RS, Suetsugu A, et al. In vivo fluorescence imaging reveals the promotion of mammary tumorigenesis by mesenchymal stromal cells. PLoS One 2013;8:e69658
  57. Chen Q, Wang X, Wu H, et al. Establishment of a dual-color fluorescence tracing orthotopic transplantation model of hepatocellular carcinoma. Mol Med Rep 2016;13:762-768
  58. Troy T, Jekic-McMullen D, Sambucetti L, Rice B. Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models. Mol Imaging 2004;3:9-23
  59. Hoffman RM. Application of GFP imaging in cancer. Lab Invest 2015;95:432-452
  60. Ezzat T, Dhar DK, Malago M, Olde Damink SW. Dynamic tracking of stem cells in an acute liver failure model. World J Gastroenterol 2012;18:507-516
  61. Bhaumik S, Lewis XZ, Gambhir SS. Optical imaging of Renilla luciferase, synthetic Renilla luciferase, and firefly luciferase reporter gene expression in living mice. J Biomed Opt 2004;9:578-586
  62. Badr CE, Tannous BA. Bioluminescence imaging: progress and applications. Trends Biotechnol 2011;29:624-633
  63. Iyer M, Sato M, Johnson M, Gambhir SS, Wu L. Applications of molecular imaging in cancer gene therapy. Curr Gene Ther 2005;5:607-618
  64. Subramaniam D, Natarajan G, Ramalingam S, et al. Translation inhibition during cell cycle arrest and apoptosis: Mcl-1 is a novel target for RNA binding protein CUGBP2. Am J Physiol Gastrointest Liver Physiol 2008;294:G1025-G1032
  65. van der Bogt KE, Sheikh AY, Schrepfer S, et al. Comparison of different adult stem cell types for treatment of myocardial ischemia. Circulation 2008;118(14 Suppl):S121-S129
  66. Preda MB, Neculachi CA, Fenyo IM, et al. Short lifespan of syngeneic transplanted MSC is a consequence of in vivo apoptosis and immune cell recruitment in mice. Cell Death Dis 2021;12:566
  67. Kalimuthu S, Oh JM, Gangadaran P, et al. Genetically engineered suicide gene in mesenchymal stem cells using a Tet-On system for anaplastic thyroid cancer. PLoS One 2017;12:e0181318
  68. Gao T, Wang P, Gong T, et al. Reporter genes for brain imaging using MRI, SPECT and PET. Int J Mol Sci 2022;23:8443
  69. Kraitchman DL, Bulte JW. Imaging of stem cells using MRI. Basic Res Cardiol 2008;103:105-113
  70. Yang C, Tian R, Liu T, Liu G. MRI reporter genes for noninvasive molecular imaging. Molecules 2016;21:580
  71. Gilad AA, Ziv K, McMahon MT, van Zijl PC, Neeman M, Bulte JW. MRI reporter genes. J Nucl Med 2008;49:1905-1908
  72. Weissleder R, Moore A, Mahmood U, et al. In vivo magnetic resonance imaging of transgene expression. Nat Med 2000;6:351-354
  73. Ichikawa T, Hogemann D, Saeki Y, et al. MRI of transgene expression: correlation to therapeutic gene expression. Neoplasia 2002;4:523-530
  74. Cohen B, Dafni H, Meir G, Harmelin A, Neeman M. Ferritin as an endogenous MRI reporter for noninvasive imaging of gene expression in C6 glioma tumors. Neoplasia 2005;7:109-117
  75. Cohen B, Ziv K, Plaks V, et al. MRI detection of transcriptional regulation of gene expression in transgenic mice. Nat Med 2007;13:498-503
  76. Genove G, DeMarco U, Xu H, Goins WF, Ahrens ET. A new transgene reporter for in vivo magnetic resonance imaging. Nat Med 2005;11:450-454
  77. Deans AE, Wadghiri YZ, Bernas LM, Yu X, Rutt BK, Turnbull DH. Cellular MRI contrast via coexpression of transferrin receptor and ferritin. Magn Reson Med 2006;56:51-59
  78. Cao M, Mao J, Duan X, et al. In vivo tracking of the tropism of mesenchymal stem cells to malignant gliomas using reporter gene-based MR imaging. Int J Cancer 2018;142:1033-1046
  79. Sun J, Huang J, Bao G, et al. MRI detection of the malignant transformation of stem cells through reporter gene expression driven by a tumor-specific promoter. Stem Cell Res Ther 2021;12:284
  80. Cho IK, Moran SP, Paudyal R, et al. Longitudinal monitoring of stem cell grafts in vivo using magnetic resonance imaging with inducible maga as a genetic reporter. Theranostics 2014;4:972-989
  81. Gambhir SS. Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer 2002;2:683-693
  82. Youn H, Hong KJ. In vivo noninvasive small animal molecular imaging. Osong Public Health Res Perspect 2012;3:48-59
  83. Tjuvajev JG, Doubrovin M, Akhurst T, et al. Comparison of radiolabeled nucleoside probes (FIAU, FHBG, and FHPG) for PET imaging of HSV1-tk gene expression. J Nucl Med 2002;43:1072-1083
  84. Penuelas I, Haberkorn U, Yaghoubi S, Gambhir SS. Gene therapy imaging in patients for oncological applications. Eur J Nucl Med Mol Imaging. 2005;32 Suppl 2:S384-S403
  85. Liang Q, Satyamurthy N, Barrio JR, et al. Noninvasive, quantitative imaging in living animals of a mutant dopamine D2 receptor reporter gene in which ligand binding is uncoupled from signal transduction. Gene Ther 2001;8:1490-1498
  86. Schonitzer V, Haasters F, Kasbauer S, et al. In vivo mesenchymal stem cell tracking with PET using the dopamine type 2 receptor and 18F-fallypride. J Nucl Med 2014;55:1342-1347
  87. Kitzberger C, Spellerberg R, Morath V, et al. The sodium iodide symporter (NIS) as theranostic gene: its emerging role in new imaging modalities and non-viral gene therapy. EJNMMI Res 2022;12:25
  88. Spitzweg C, Bible KC, Hofbauer LC, Morris JC. Advanced radioiodine-refractory differentiated thyroid cancer: the sodium iodide symporter and other emerging therapeutic targets. Lancet Diabetes Endocrinol 2014;2:830-842
  89. Gu E, Chen WY, Gu J, Burridge P, Wu JC. Molecular imaging of stem cells: tracking survival, biodistribution, tumorigenicity, and immunogenicity. Theranostics 2012;2:335-345
  90. Terrovitis J, Kwok KF, Lautamaki R, et al. Ectopic expression of the sodium-iodide symporter enables imaging of transplanted cardiac stem cells in vivo by single-photon emission computed tomography or positron emission tomography. J Am Coll Cardiol 2008;52:1652-1660
  91. Dwyer RM, Ryan J, Havelin RJ, et al. Mesenchymal Stem Cell-mediated delivery of the sodium iodide symporter supports radionuclide imaging and treatment of breast cancer. Stem Cells 2011;29:1149-1157
  92. Sharif-Paghaleh E, Sunassee K, Tavare R, et al. In vivo SPECT reporter gene imaging of regulatory T cells. PLoS One 2011;6:e25857
  93. Price DN, McBride AA, Anton M, et al. Longitudinal assessment of lung cancer progression in mice using the sodium iodide symporter reporter gene and SPECT/CT imaging. PLoS One 2016;11:e0169107
  94. Knoop K, Kolokythas M, Klutz K, et al. Image-guided, tumor stroma-targeted 131I therapy of hepatocellular cancer after systemic mesenchymal stem cell-mediated NIS gene delivery. Mol Ther 2011;19:1704-1713
  95. Conrad C, Husemann Y, Niess H, et al. Linking transgene expression of engineered mesenchymal stem cells and angiopoietin-1-induced differentiation to target cancer angiogenesis. Ann Surg 2011;253:566-571