DOI QR코드

DOI QR Code

소백산국립공원 산림생태계의 토양미생물호흡량 평가

Estimation of Soil Microbiological Respiration Volume in Forest Ecosystem in the Sobaeksan National Park of Korea

  • 투고 : 2023.03.14
  • 심사 : 2023.05.17
  • 발행 : 2023.06.30

초록

The purpose of this study is to estimate carbon dioxide emissions from soil microbial respiration by forest type of Sobaeksan National Park. As a result of estimating the annual soil microbiological respiration volume by forest type in Sobaeksan National Park, broad-leaved forests, coniferous forest, artificial forests were similar to around 19.5 CO2-ton/ha/yr. In the case of coniferous forests in sub-alpine and grassland near Birobong Peak, 12.2 CO2-ton/ha/yr and 8.1 CO2-ton/ha/yr, respectively, were lower than general forest areas. And as a result of analyzing the changes in soil microbiological respiration rate according to forest type in Sobaeksan National Park, the soil microbiological respiration rate in coniferous forests, broad-leaved forests, artificial forests, and sub-alpine areas was the highest in the July survey in summer and the lowest in November in late autumn. The change in soil microbial respiratory volume according to the measurement time in Sobaeksan National Park was the highest between 12:00 and 16:00, when the soil temperature was generally the highest among the days. It is known that the soil temperature is relatively low and the amount of soil microbial respiration decreases during winter, and the change in respiratory volume over the measurement time during the day was the smallest in November, when the amount of soil microbial respiration was relatively smaller than the May-September survey. However, this study has limitations in revealing the causal relationship of various environmental factors that affect the soil microbial respiration. Therefore, it is suggested that long-term research and investigation of various factors affecting soil respiration are needed to understand the carbon cycle of forest ecosystems.

키워드

과제정보

이 논문은 국립공원공단 국립공원연구원에서 수행한 2022년 「국립공원 육상생태계 탄소저장·흡수량 평가 체계 구축」 사업의 지원을 받아 작성되었음.

참고문헌

  1. Behera, N..S. K. Joshi and D. P. Pati. 1990. Root contribution to total soil metabolism in a tropical forest soil from Orissa, India. For. Ecol. Manage. 36 : 125-134 https://doi.org/10.1016/0378-1127(90)90020-C
  2. Bekku, Y..H. Koizumi.T. Oikawa and H. Iwaki. 1997. Examination of four methods for measuring soil respiration. Soil Ecology 5, 247-254. https://doi.org/10.1016/S0929-1393(96)00131-X
  3. Bowden, K. D..K. J. Nadelhoffer.R. D. Boone.J. M. Melillo, and J. B. GaiTison. 1993. Contributions of aboveground litter, belowground litter, and root respiration to total soil respiration in a temperate mixed hardwood forest. Can. J. For. Res. 23(7) : 1402-1407 https://doi.org/10.1139/x93-177
  4. Dudley, N..S. Stolton.A. Belokurov.L. Krueger.N. Lopoukhine.K. MacKinnon.T. Sandwith and N. Sekhran. 2010. Natural Solutions: Protected areas helping people cope with climate change, IUCN-WCPA, TNC, UNDP, WCS, The World Bank and WWF, Gland, Switzerland, Washington DC and New York, USA
  5. Dulohery, C. J..L. A. Morris and R. Lowrance. 1996. Assessing Forest Soil Disturbance through Biogenic Gas Fluxes. Soil Sci. Soc. Am. J. 60:291-298 https://doi.org/10.2136/sssaj1996.03615995006000010045x
  6. Ellert, B. H. and E. G. Gregorich. 1995. Management-induced changes in the actively cycling fractions of soil organic matter. Pages 119-138 in W.W. McFee and J.M. Kelly. eds. Carbon Forms and Functions in Forest Soils. Soil Sci. Soc. Am.
  7. Ewel. K. C..W. P. Cropper and H. L. Gholz. 1987. Soil C02 evolution in Florida slash pine plantations. II. Importance of root respiration. Can. J. For. Res. 17 : 330~333 https://doi.org/10.1139/x87-055
  8. Hwang EJ.Jeong MJ and Lee MJ. 2010. Soil CO2 efflux in a Quercus mongolica stand : the contribution of root respiration. Proceedings of the 2010 Spring Meeting of the Korean Forest Society. pp. 236
  9. IUCN(2020) IUCN Global Standard for Nature-based Solutions: a user-friendly framework for the verification, design and scaling up of NbS. First edition. Gland, Switzerland. 30pp
  10. Kelting, D. L..J. A. Burger and G. S. Edwards. 1995. Fractionating total soil respiration into root. rhizomicrobial. and non-rhizomicrobial respiration components. Agron. Abst. PP. 308
  11. KFRI(2021) Utilization of NbS in the forest sector with climate change. Seoul, Korea. 109pp
  12. Le Dantec.V. D. Epron and E. Dufrene. 1999. Soil CO2 efflux in a beech forest: comparison of two closed dynamic systems. Plant and soil 214, 125-132 https://doi.org/10.1023/A:1004737909168
  13. Lee EH.Lim JH and Lee JS. 2010. A Review on Soil Respiration Measurement and Its Application in Korea. Korean Journal of Agricultural and Forest Meteorology. 12(4): 264~276 https://doi.org/10.5532/KJAFM.2010.12.4.264
  14. Lee KJ.Won HY and Mun HT. 2012. Contribution of Root Respiration to Soil Respiration for Quercus acutissima Forest. Korean Journal of Environment and Ecology. 26(5) : 780-786
  15. Lee NY.Koo JW and Noh NJ. 2010. Autotrophic and heterotrophic respiration in needle fir and Quercus-dominated stands in a cool-temperate forest, central Korea. J Plant Res. 123 : 485~495 https://doi.org/10.1007/s10265-010-0316-7
  16. Lee SJ.Park HC.Park GS.Kim HS.Lee CM.Kim JW.Sim GW and Choi SW. 2022. Estimation of Carbon Storage for Trees in Forest Ecosystem in the National Parks of Korea. J. Korean Env. Res. Tech. 25(3): 1~16
  17. Nay, S. M..K. G. Mattson and B. T. Bormann. 1994. Biases of chamber methods for measuring soil CO2 efflux demonstrated with a laboratory apparatus. Ecology 75, 2460-2463. https://doi.org/10.2307/1940900
  18. Pongracic, S..M. U. F. Krischbaum and R. J. Raison. 1997. Comparison of soda lime and infrared gas analysis techniques for in situ measurement of forest soil respiration. Canadian Journal of Forest Research 27, 1890-1895 https://doi.org/10.1139/x97-139
  19. Raich, J. W. and W. H. Schlesinger. 1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus 44, 81-99. https://doi.org/10.3402/tellusb.v44i2.15428
  20. Schimel, D. S..B. H. Braswell.R. Mckeown.D. S. Ojima.W. J. Parton and W. Pulliam. 1996. Climate and nitrogen controls on the geography and timescales of terrestrial biogeochemical cycling. Global Biogeochemical Cycle 10, 677-692 https://doi.org/10.1029/96GB01524
  21. Son YH.Kim DH.Park IH.Lee MJ and Jin HO. 2007. Production and nutrient cycling of oak forests in Korea : a case study of Quercus mongolica and Q. variabilis stands. Kangwon National University Press. 142~143
  22. Son YH and Kim HW. 1996. Soil Respiration in Pinus rigida and Larix leptolepis Plantations. Jour. Korean For. Soc. 85(3) : 496~505
  23. Vitousek, P. M. and R. W. Howarth. 1991. Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry 13, 87-115 https://doi.org/10.1007/BF00002772
  24. Yi MJ. 2003. Evolution in Quercus variabilis and Q. mongolica Forests in Chunchon, Kangwon Province. Korean For. Soc. 92(3) : 263~269