DOI QR코드

DOI QR Code

Spent-GAC Regeneration Using Variable Frequency Sono-Fenton Oxidation

가변 주파수 Sono-Fenton 산화를 이용한 Spent-GAC 재생기술

  • 주수빈 (국립공주대학교 환경공학과) ;
  • 이상민 (국립공주대학교 환경공학과) ;
  • 김형준 ((주)피앤아이휴먼코리아) ;
  • 심인태 ((주)피앤아이휴먼코리아) ;
  • 김희진 ((주)피앤아이휴먼코리아)
  • Received : 2023.03.14
  • Accepted : 2023.05.31
  • Published : 2023.08.01

Abstract

As an adsorption technology for dissolved organic matter, the adsorption capacity of granular activated carbon, GAC, can be applied, but activated carbon whose adsorption capacity is significantly reduced by use is inevitably replaced or regenerated. However, due to the economics of replacement cost, thermal regeneration method is used commercially, but high energy cost and loss of activated carbon occur under high temperature conditions above 800℃. In this study, the Sono-Fenton method, a multi-oxidation technology that combines Fenton oxidation and ultrasonic oxidation, was applied to improve the regeneration efficiency of spent GAC used to treat dissolved organic matter in combined sewer overflows (CSOs), and the regeneration efficiency of spent GAC by oxidant and ultrasonic frequency was investigated. In the applied Sono-Fenton treatment, the highest regeneration efficiency of 68.5% was obtained under the regeneration conditions of Fe2+ 10 mmol/L, H2O2 concentration 1,000 mmol/L, ultrasonic treatment time of 120 min, and ultrasonic frequency of 40 kHz. And similar efficiency was also obtained at 750 kHz, while ultrasonic waves of other frequencies had poor regeneration efficiency, and the magnitude of frequency and GAC regeneration efficiency did not show a linear relationship. In the case of continuous operation of the GAC adsorption tower with CSOs prepared by diluting raw sewage, about 700 hours of operation without regeneration was possible, and as a result of applying one Sono-Fenton treatment, 40-70% CODcr removal efficiency was obtained during a total of 1,000 hours of GAC adsorption operation.

용존 유기물을 흡착 제거하는 기술로서, 흡착능이 우수한 입상활성탄을 우선적으로 적용할 수 있지만, 흡착탑의 운전기간에 따라 GAC의 흡착능이 현저히 저하되어 파과되는 한계가 있으며 파과된 활성탄인 spent-GAC는 교체나 재생이 불가피하다. 활성탄 교체는 비용의 경제성 때문에 기피되며 상업적으로 열재생법을 사용하고 있으나, 800℃ 이상의 고온 조건으로 인한 높은 에너지 비용과 활성탄의 질량 손실이 발생하는 단점이 있다. 본 연구에서는 CSOs내의 용존 유기물 처리에 사용된 spent-GAC의 재생효율을 제고하기 위해, Fenton 산화법과 초음파 산화를 융합한 다중산화기술인 Sono-Fenton 방법을 적용하였고, 산화제 주입농도와 초음파 주파수별 spent-GAC의 재생효율을 조사하였다. 적용된 Sono-Fenton 처리에서 Fe2+ 10 mmol/L, H2O2 농도 1,000 mmol/L, 120분 초음파 주사시간, 초음파 주파수 40 kHz 재생처리 조건에서 68.5%의 가장 높은 재생효율을 얻을 수 있었고, 750 kHz에서도 유사한 효율을 얻을 수 있었으며, 다른 주파수의 초음파는 재생효율이 불량했고 주파수의 크기와 GAC 재생효율은 선형 관계를 나타내지 않았다. 실 하수를 희석하여 제조한 CSOs로 GAC 흡착탑을 연속운전 한 경우, 재생없이 700시간 내외의 운전이 가능했고 1회의 Sono-Fenton 처리를 적용한 결과, 총 1,000시간의 GAC 흡착 운전 기간 동안 40~70%의 CODcr 제거 효율이 확보하였다.

Keywords

Acknowledgement

본 결과물은 환경부의 재원으로 한국환경산업기술원의 유망녹색기업 기술혁신개발 사업으로 지원을 받아 연구되었습니다(2020003160012).

References

  1. Adewuyi, Y. G. (2001). "Sonochemistry: environmental science and engineering applications." Industrial & Engineering Chemistry Research, ACS, Vol. 40, No. 22, pp. 4681-4715, https://doi.org/10.1021/ie010096l.
  2. Cho, I.-H., Kho, Y.-L., Lee, S.-J., Lee, H.-K. and Zoh, K.-D. (2000). "A study on the dye-wastewater treatment by fenton and photo-fenton oxidation process." Journal of Environmental Health Sciences, KSEH, Vol. 26, No. 4, pp. 29-37 (in Korean).
  3. Feng, F., Xu, Z., Li, X., You, W. and Zhen, Y. (2010). "Advanced treatment of dyeing wastewater towards reuse by the combined Fenton oxidation and membrane bioreactor process." Journal of Environmental Sciences, Elsevier, Vol. 22, No. 11, pp. 1657-1665, https://doi.org/10.1016/S1001-0742(09)60303-X.
  4. Fenton, H. J. H. (1894). "Oxidation of tartaric acid in presence of iron." Journal of the Chemical Society, Transactions, Vol. 65, pp. 899-910. https://doi.org/10.1039/CT8946500899.
  5. Gong, N.-S. and Seo, J.-Y. (2003). "Treatment of toluene vapor in a biological activated carbon process and removal of excess biomass using ultrasonic." Journal of Korean Society of Environmental Engineers, KSEE, Vol. 25, No. 12, pp. 1522-1530 (in Korean).
  6. Guilanea, S. and Hamdaoui, O. (2015). "Regeneration of exhausted granular activated carbon by low frequency ultrasound in batch reactor." Desalination and Water Treatment, Taylor & Francis, Vol. 57, No. 34, pp. 15826-15834, https://doi.org/10.1080/19443994.2015.1077350.
  7. Guo, Y., Xue, Q., Zhang, H., Wang, N., Chang, S., Wang, H. and Chen, P. H. (2018). "Treatment of real benzene dye intermediates wastewater by the Fenton method: characteristics and multi-response optimization." RSC Advances, RCS, Vol. 8, pp. 80-90, https://doi.org/10.1039/C7RA09404C.
  8. Joo, S. B. (2023). A study on the adsorption treatment of CSOs using GAC and spent-GAC regeneration technology, MSc, Thesis, Kongju National University (in Korean).
  9. Jun, S.-J. and Kim, M.-J. (2000). "A study on the efficient applicability of fenton oxidation for the wastewater containing non-biodegradable organics." Journal of Korean Society of Water and Wastewater, KSWW, Vol. 14, No. 1, pp. 76-83.
  10. Kang, S.-H. and Rhew, D.-W. (1975). "Thermal regeneration of activated carbon for waste water treatment." Korean Journal of Chemical Engineering, KICHE, Vol. 13, No. 5, pp. 253-260 (in Korean).
  11. Kim, S.-Y., Jeong, I.-J., Park, S.-J. and Park, J.-T. (2002). "A study on characteristics of thermal reactivation for spent granular activated carbon used on the full-scale BAC process." KSCE Journal of Civil and Environmental Engineering Research, KSCE, Vol. 22, No. 3-B, pp. 383-391 (in Korean).
  12. Kim, S.-D., Kim, H.-S. and Lee, J.-H. (2000). "A study on thermal regeneration of spent activated carbon loaded with phenol : 2. medium temperature pyrolysis reaction characteristics." Journal of Korean Society of Environmental Engineers, KSEE, Vol. 22, No. 8, pp. 1485-1494 (in Korean).
  13. Kim, H.-S., Lee, J.-P. and Han, H.-S. (1999). "Treatment of the wastewater of high surfactant concentration by GAC GAC Adsorption." Journal of Oil & Applied Science, KOCSA, Vol. 16, No. 1, pp. 59-65, https://doi.org/10.12925/jkocs.1999.16.1.8 (in Korean).
  14. Kim, H.-S., Lim, B.-R., Lee, S.-K., Shin, H.-S. and Choi, S.-P. (2019). "Removal of suspended solids and phosphorous in combined sewer overflows (CSOs) by filtration apparatus with expanded waste-glass filter media." Journal of Korea Society of Waste Management, KSWM, Vol. 36, No. 1, pp. 97-105, https://doi.org/10.9786/kswm.2019.36.1.97 (in Korean).
  15. Kim, S.-G., Son, H.-J., Jung, J.-M., Ryu, D.-C. and Yoo, P.-J. (2015). "Evaluation of drinking water treatment efficiency according to regeneration temperatures of granular activated carbon (GAC)." Journal of Environmental Science International, KESS, Vol. 24, No. 9, pp. 1163-1170, https://doi.org/10.5322/JESI.2015.24.9.1163 (in Korean).
  16. Kumar, A., Kumar, S. and Kumar, S. (2003). "Adsorption of resorcinol and catechol on granular activated carbon: Equilibrium and kinetics." Carbon, Elsevier, Vol. 41, No. 15, pp. 3015-3025, https://doi.org/10.1016/S0008-6223(03)00431-7.
  17. Kwon, H.-J., Lee, S.-J., Yu, Y.-B. and Jun, H.-B. (2019). "Biological treatment of RO waste water by fenton oxidation pre-treatment." Journal of Korean Society of Water Science and Technology, KSWST, Vol. 27, No. 1, pp. 39-48, https://doi.org/10.17640/KSWST.2019.27.1.39 (in Korean).
  18. Lee, S.-M., Joo, S.-B., Jo, Y.-S., Oh, Y.-J., Kim, H.-J. and Shim, I.-T. (2022a). "A study of the regeneration of spent gac using an electrochemical method." KSCE Journal of Civil and Environmental Engineering Research, KSCE, Vol. 42, No. 4, pp. 481-491, https://doi.org/10.12652/Ksce.2022.42.4.0481 (in Korean).
  19. Lee, S.-M., Joo, S.-B. and Lim, K.-H. (2022b). "Regeneration of Granular Activated Carbon (GAC) using fenton's oxidation reaction for Combined Sewer Overflows (CSOs) treatment." Journal of the Korean Society of Urban Environment, KSUE, Vol. 22, No. 1, pp. 1-11 (in Korean). https://doi.org/10.33768/ksue.2022.22.1.1
  20. Lee, B.-J., Na, J.-H., Kim, J.-S., Joo, J.-Y., Bae, Y.-S., Jung, I.-H. and Park, C.-H. (2010). "A study on treatment of CSOs by vortex separator and continuous fiber-filter system." Journal of Korean Society of Water and Wastewater, KSWW, Vol. 24, No. 4, pp. 443-451 (in Korean).
  21. Lim, H., Namkung, K. C. and Yoon, J. (2005). "Theoretical understanding of fenton chemistry." Applied Chemistry for Engineering, KSIEC, Vol. 16, No. 1, pp. 9-14 (in Korean).
  22. Lim, J. L. and Okada, M. (2005). "Regeneration of granular activated carbon using ultrasound." Ultrasonics Sonochemistry, Elsevier, Vol. 12, pp. 277-282, https://doi.org/10.1016/j.ultsonch.2004.02.003.
  23. Lu, J. and Wang, S. (2010). "Ultrasonic regeneration of granular activated carbon used in water treatment." Proceedings of 2010 4th International Conference on Bioinformatics and Biomedical Engineering, Chengdu, China, https://doi.org/10.1109/ICBBE.2010.5516459.
  24. Parsa, J. B. and Jafari, F. (2017). "Sono-fenton regeneration of granular activated carbon saturated with rhodamine B: Optimization using response surface methodology." Chemical Engineering Communications, Taylor & Francis, Vol. 204, No. 9, pp. 1070-1081, https://doi.org/10.1080/00986445.2017.1338180.
  25. Ranjit, P. J. D., Palanivelu, K. and Lee, C.-S. (2008). "Degradation of 2,4-dichlorophenol in aqueous solution by sono-fenton method." Korean Journal of Chemical Engineering, KICHE, Vol. 25, No. 1, pp. 112-117. https://doi.org/10.1007/s11814-008-0020-7
  26. Serna-Galvis, E. A., Silva-Agredo, J., Giraldo-Aguirre, A. L. and Torres-Palma, R. A. (2015). "Sonochemical degradation of the pharmaceutical fluoxetine: Effect of parameters, organic and inorganic additives and combination with a biological system." The Science of the Total Environment, Elsevier, Vols. 524-525, pp. 354-360, https://doi.org/10.1016/j.scitotenv.2015.04.053.
  27. Son, H.-J., Yoom, H.-S., Seo, C.-D., Kim, S.-G. and Kim, Y.-S. (2020). "Evaluation of dissolved organic matter removal characteristics in GAC adsorption process in drinking water treatment process using LC-OCD-OND." Journal of Korean Society of Environmental Engineers, KSEE, Vol. 42, No. 5, pp. 239-250, https://doi.org/10.4491/KSEE.2020.42.5.239 (in Korean).
  28. Umar, M., Aziz, H. A. and Yusoff, M. S. (2010). "Trends in the use of fenton, electro-fenton and photo-fenton for the treatment of landfill leachate." Waste Management, Elsevier, Vol. 30, No. 11, pp. 2113-2121, https://doi.org/10.1016/j.wasman.2010.07.003.