DOI QR코드

DOI QR Code

Increased Amino Acid Absorption Mediated by Lacticaseibacillus rhamnosus IDCC 3201 in High-Protein Diet-Fed Mice

  • Hayoung Kim (Ildong Bioscience) ;
  • Jungyeon Kim (Carl R. Woese Institute for Genomic Biology, the University of Illinois at Urbana-Champaign) ;
  • Minjee Lee (Ildong Bioscience) ;
  • Hyeon Ji Jeon (School of Food Science and Biotechnology, Kyungpook National University) ;
  • Jin Seok Moon (Ildong Pharmaceutical) ;
  • Young Hoon Jung (School of Food Science and Biotechnology, Kyungpook National University) ;
  • Jungwoo Yang (Ildong Bioscience)
  • Received : 2022.12.11
  • Accepted : 2023.01.10
  • Published : 2023.04.28

Abstract

The use of dietary protein products has increased with interests in health promotion, and demand for sports supplements. Among various protein sources, milk protein is one of the most widely employed, given its economic and nutritional advantages. However, recent studies have revealed that milk protein undergoes fecal excretion without complete hydrolysis in the intestines. To increase protein digestibility, heating and drying were implemented; however, these methods reduce protein quality by causing denaturation, aggregation, and chemical modification of amino acids. In the present study, we observed that Lacticaseibacillus rhamnosus IDCC 3201 actively secretes proteases that hydrolyze milk proteins. Furthermore, we showed that co-administration of milk proteins and L. rhamnosus IDCC 3201 increased the digestibility and plasma concentrations of amino acids in a high-protein diet mouse model. Thus, food supplementation of L. rhamnosus IDCC 3201 can be an alternative strategy to increase the digestibility of proteins.

Keywords

Acknowledgement

This research was performed in Ildong Bioscience and Kyungpook National University, and supported by Ildong Bioscience and Kyungpook National University Research Fund 2022.

References

  1. Karlund A, Gomez-Gallego C, Turpeinen AM, Palo-Oja OM, El-Nezami H, Kolehmainen M. 2019. Protein supplements and their relation with nutrition, microbiota composition and health: is more protein always better for sportspeople? Nutrients 11: 829. 
  2. Ozer BH, Kirmaci HA. 2010. Functional milks and dairy beverages. Int. J. Dairy Technol. 63: 1-15.  https://doi.org/10.1111/j.1471-0307.2009.00547.x
  3. Zehetmeier M, Baudracco J, Hoffmann H, Heissenhuber A. 2012. Does increasing milk yield per cow reduce greenhouse gas emissions? A system approach. Animal 6: 154-166.  https://doi.org/10.1017/S1751731111001467
  4. Schaafsma G. 2000. The protein digestibility-corrected amino acid score. J. Nutr. 130: 1865S-1867S.  https://doi.org/10.1093/jn/130.7.1865S
  5. Rebouillat S, Ortega-Requena S. 2015. Potential applications of milk fractions and valorization of dairy by-products: A review of the state-of-the-art available data, outlining the innovation potential from a bigger data standpoint. J. Biomater. Nanobiotechnol. 6: 176. 
  6. Whey protein powder market 2022: Detailed analysis of industry, potential growth, attractive valuation and growth forecast up to 2029 | 105 pages report. Available from https://www.marketwatch.com/press-release/whey-protein-powder-market-2022-detailed-analysis-of-industry-potential-growth-attractive-valuation-and-growth-forecast-up-to-2029-105-pages-report-2022-10-26. Accessed Oct. 26, 2022. 
  7. Goodman BE. 2010. Insights into digestion and absorption of major nutrients in humans. Adv. Physiol. Educ. 34: 44-53.  https://doi.org/10.1152/advan.00094.2009
  8. de la Fuente M, Lombardero L, Gomez-Gonzalez A, Solari C, Angulo-Barturen I, Acera A, et al. 2021. Enzyme therapy: current challenges and future perspectives. Int. J. Mol. Sci. 22: 9181. 
  9. Schutz Y. 2011. Protein turnover, ureagenesis and gluconeogenesis. Int. J. Vitam. Nutr. Res. 81: 101-107.  https://doi.org/10.1024/0300-9831/a000064
  10. Halper J, Kjaer M. 2014. Basic components of connective tissues and extracellular matrix: elastin, fibrillin, fibulins, fibrinogen, fibronectin, laminin, tenascins and thrombospondins. Adv. Exp. Med. Biol. 802: 31-347.  https://doi.org/10.1007/978-94-007-7893-1_3
  11. Dupont D, Tome D. 2020. Milk proteins: Digestion and absorption in the gastrointestinal tract, pp. 701-714. 3rd Ed. Elsevier, San Diego, California. 
  12. van Lieshout GAA, Lambers TT, Bragt MCE, Hettinga KA. 2020. How processing may affect milk protein digestion and overall physiological outcomes: A systematic review. Crit. Rev. Food Sci. Nutr. 60: 2422-2445.  https://doi.org/10.1080/10408398.2019.1646703
  13. Jager R, Zaragoza J, Purpura M, Lametti S, Marengo M, Tinsley GM, et al. 2020. Probiotic administration increases amino acid absorption from plant protein: a placebo-controlled, randomized, double-blind, multicenter, crossover study. Probiotics Antimicrob. Proteins 12: 1330-1339.  https://doi.org/10.1007/s12602-020-09656-5
  14. Stecker RA, Moon JM, Russo TJ, Ratliff KM, Mumford PW, Jager R, et al. 2020. Bacillus coagulans GBI-30, 6086 improves amino acid absorption from milk protein. Nutr. Metab. 17: 93. 
  15. Wang J, Ji H. 2019. Influence of probiotics on dietary protein digestion and utilization in the gastrointestinal tract. Curr. Protein Pept. Sci. 20: 125-131.  https://doi.org/10.2174/1389203719666180517100339
  16. Kim MS, Lee M, Oh H, Seo W, Kim G-S, Ban O-H, et al. 2021. Enhanced ceramide production by Lactobacillus rhamnosus IDCC 3201 and its proposed mechanism. Appl. Biol. Chem. 64: 50. 
  17. Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30: 2068-2069.  https://doi.org/10.1093/bioinformatics/btu153
  18. Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, et al. 2014. InterProScan 5: genome-scale protein function classification. Bioinformatics 30: 1236-1240.  https://doi.org/10.1093/bioinformatics/btu031
  19. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. 2009. BLAST+: architecture and applications. BMC Bioinform. 10: 421. 
  20. Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, et al. 2016. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 44: D286-D293.  https://doi.org/10.1093/nar/gkv1248
  21. Sun SW, Lin YC, Weng YM, Chen MJ. 2006. Efficiency improvements on ninhydrin method for amino acid quantification. J. Food Compos. Anal. 19: 112-117.  https://doi.org/10.1016/j.jfca.2005.04.006
  22. Dery O, Corvera CU, Steinhoff M, Bunnett NW. 1998. Proteinase-activated receptors: novel mechanisms of signaling by serine proteases. Am. J. Physiol. Cell Physiol. 274: C1429-C1452.  https://doi.org/10.1152/ajpcell.1998.274.6.C1429
  23. Khan MJ, Desaire H, Lopez OL, Kamboh MI, Robinson RA. 2021. Why inclusion matters for Alzheimer's disease biomarker discovery in plasma. J. Alzheimers Dis. 79: 1327-1344.  https://doi.org/10.3233/JAD-201318
  24. Christensson C, Bratt H, Collins LJ, Coolbear T, Holland R, Lubbers MW, et al. 2002. Cloning and expression of an oligopeptidase, PepO, with novel specificity from Lactobacillus rhamnosus HN001 (DR20). Appl. Environ. Microbiol. 68: 254-262.  https://doi.org/10.1128/AEM.68.1.254-262.2002
  25. Harwood CR, Kikuchi Y. 2022. The ins and outs of Bacillus proteases: activities, functions and commercial significance. FEMS Microbiol. Rev. 46: fuab046. 
  26. Yokoyama T, Niinae T, Tsumagari K, Imami K, Ishihama Y, Hizukuri Y, et al. 2021. The Escherichia coli S2P intramembrane protease RseP regulates ferric citrate uptake by cleaving the sigma factor regulator FecR. J. Biol. Chem. 296:100673. 
  27. Savijoki K, Ingmer H, Varmanen P. 2006. Proteolytic systems of lactic acid bacteria. Appl. Microbiol. Biotechnol. 71: 394-406.  https://doi.org/10.1007/s00253-006-0427-1
  28. Mayo B, Kok J, Bockelmann W, Haandrikman A, Leenhouts KJ, Venema G. 1993. Effect of X-prolyl dipeptidyl aminopeptidase deficiency on Lactococcus lactis. Appl. Environ. Microbiol. 59: 2049-2055.  https://doi.org/10.1128/aem.59.7.2049-2055.1993
  29. Royle PJ, McIntosh GH, Clifton PM. 2008. Whey protein isolate and glycomacropeptide decrease weight gain and alter body composition in male Wistar rats. Br. J. Nutr. 100: 88-93.  https://doi.org/10.1017/S0007114507883000
  30. Kaewtapee C, Burbach K, Tomforde G, Hartinger T, Camarinha-Silva A, Heinritz S. 2017. Effect of Bacillus subtilis and Bacillus licheniformis supplementation in diets with low-and high-protein content on ileal crude protein and amino acid digestibility and intestinal microbiota composition of growing pigs. J. Anim. Sci. Biotechnol. 8: 37. 
  31. Wu G. 2010. Functional amino acids in growth, reproduction, and health. Adv. Nutr. 1: 31-37.  https://doi.org/10.3945/an.110.1008
  32. Li P, Yin YL, Li D, Kim SW, Wu G. 2007. Amino acids and immune function. Br. J. Nutr. 98: 237-252.  https://doi.org/10.1017/S000711450769936X
  33. Holecek M. 2022. Serine metabolism in health and disease and as a conditionally essential amino acid. Nutrients 14: 1987. 
  34. Alves A, Bassot A, Bulteau AL, Pirola L, Morio B. 2019. Glycine metabolism and its alterations in obesity and metabolic diseases. Nutrients 11: 1356. 
  35. Stapleton PP, O'Flaherty L, Redmond HP, Bouchier-Hayes DJ. 1998. Host defense-a role for the amino acid taurine? J. Parenter. Enteral. Nutr. 22: 42-48.  https://doi.org/10.1177/014860719802200142
  36. Vettore LA, Westbrook RL, Tennant DA. 2021. Proline metabolism and redox; maintaining a balance in health and disease. Amino Acids 53: 1779-1788.  https://doi.org/10.1007/s00726-021-03051-2
  37. Konopelski P, Mogilnicka I. 2022. Biological effects of indole-3-propionic acid, a gut microbiota-derived metabolite, and its precursor tryptophan in mammals' health and disease. Int. J. Mol. Sci. 23: 1222.