DOI QR코드

DOI QR Code

Quercetin Attenuates the Production of Pro-Inflammatory Cytokines in H292 Human Lung Epithelial Cells Infected with Pseudomonas aeruginosa by Modulating ExoS Production

  • Hye In Ahn (Life Science Research Center, Nine Biopharm Co., LTD) ;
  • Hyun-Jae Jang (Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Ok-Kyoung Kwon (Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Jung-Hee Kim (Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Jae-Hoon Oh (Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Seung-Ho Kim (Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Sei-Ryang Oh (Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Sang-Bae Han (College of Pharmacy, Chungbuk National University) ;
  • Kyung-Seop Ahn (Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Ji-Won Park (Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology)
  • Received : 2022.08.23
  • Accepted : 2023.01.11
  • Published : 2023.04.28

Abstract

The type three secretion system (T3SS) is a major virulence system of Pseudomonas aeruginosa (P. aeruginosa). The effector protein Exotoxin S (ExoS) produced by P. aeruginosa is secreted into the host cells via the T3SS. For the purpose of an experiment on inhibitors with regard to ExoS secretion, we developed a sandwich-type enzyme-linked immunosorbent assay (ELISA) system. Quercetin was selected because it has a prominent ExoS inhibition effect and also is known to have anti-inflammatory and antioxidant effects on mammalian cells. In this study, we investigated the effects of quercetin on the expression and secretion of ExoS using ELISA and Western blot analysis methods. The results showed that the secretion of ExoS was significantly decreased by 10 and 20 µM of quercetin. Also, popB, popD, pscF, and pcrV which are composed of the T3SS needle, are reduced by quercetin at the mRNA level. We also confirmed the inhibitory effect of quercetin on cytokines (IL-6, IL-1β, and IL-18) in P. aeruginosa-infected H292 cells by real-time polymerase chain reaction (PCR) and ELISA. Collectively, quercetin inhibits the secretion of ExoS by reducing both ExoS production and the expression of the needle protein of T3SS. Furthermore, these results suggest that quercetin has the potential to be used as an anti-toxic treatment for the inflammatory disease caused by P. aeruginosa infection.

Keywords

Acknowledgement

This study was supported by the Bio and Medical Technology Development Program of the National Research Foundation (NRF) and funded by the Korean government (grant number: NRF-2020R1A2C2101228) and awarded to the Korea Research Institute of Bioscience and Biotechnology(KRIBB) Research Initiative Program (KGM5522322) of the Republic of Korea. The funders had no role in data analysis, study design or preparation of the manuscript.

References

  1. Engel J, Balachandran P. 2009. Role of Pseudomonas aeruginosa type III effectors in disease. Curr. Opin. Microbiol. 12: 61-66. https://doi.org/10.1016/j.mib.2008.12.007
  2. Sousa AM, Pereira MO. 2014. Pseudomonas aeruginosa diversification during infection development in cystic fibrosis lungs-a review. Pathogens 3: 680-703. https://doi.org/10.3390/pathogens3030680
  3. Sawa T. 2014. The molecular mechanism of acute lung injury caused by Pseudomonas aeruginosa: from bacterial pathogenesis to host response. J. Intensive Care 2: 10.
  4. Yahr TL, Wolfgang MC. 2006. Transcriptional regulation of the Pseudomonas aeruginosa type III secretion system. Mol. Microbiol. 62: 631-640. https://doi.org/10.1111/j.1365-2958.2006.05412.x
  5. Hauser AR. 2009. The type III secretion system of Pseudomonas aeruginosa: infection by injection. Nat. Rev. Microbiol. 7: 654-665. https://doi.org/10.1038/nrmicro2199
  6. Romano FB, Tang Y, Rossi KC, Monopoli KR, Ross JL, Heuck AP. 2016. Type 3 secretion translocators spontaneously assemble a hexadecameric transmembrane complex. J. Biol. Chem. 291: 6304-6315. https://doi.org/10.1074/jbc.M115.681031
  7. Galle M, Carpentier I, Beyaert R. 2012. Structure and function of the Type III secretion system of Pseudomonas aeruginosa. Curr. Protein Pept. Sci. 13: 831-842. https://doi.org/10.2174/138920312804871210
  8. Kaufman MR, Jia J, Zeng L, Ha U, Chow M, Jin S. 2000. Pseudomonas aeruginosa mediated apoptosis requires the ADP-ribosylating activity of exoS. Microbiology 146 (Pt 10): 2531-2541. https://doi.org/10.1099/00221287-146-10-2531
  9. Iglewski BH, Sadoff J, Bjorn MJ, Maxwell ES. 1978. Pseudomonas aeruginosa exoenzyme S: an adenosine diphosphate ribosyltransferase distinct from toxin A. Proc. Natl. Acad. Sci. USA 75: 3211-3215. https://doi.org/10.1073/pnas.75.7.3211
  10. Grandjean T, Boucher A, Thepaut M, Monlezun L, Guery B, Faudry E, et al. 2017. The human NAIP-NLRC4-inflammasome senses the Pseudomonas aeruginosa T3SS inner-rod protein. Int. Immunol. 29: 377-384. https://doi.org/10.1093/intimm/dxx047
  11. Sutterwala FS, Mijares LA, Li L, Ogura Y, Kazmierczak BI, Flavell RA. 2007. Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 inflammasome. J. Exp. Med. 204: 3235-3245. https://doi.org/10.1084/jem.20071239
  12. Anantharajah A, Mingeot-Leclercq MP, Van Bambeke F. 2016. Targeting the type three secretion system in Pseudomonas aeruginosa. Trends Pharmacol. Sci. 37: 734-749. https://doi.org/10.1016/j.tips.2016.05.011
  13. Park JW, Oh JH, Hwang D, Kim S-M, Min J-H, Seo J-Y, et al. 2021. 3,4,5 Trihydroxycinnamic acid exerts antiinflammatory effects on TNF-α//IFN-γ-stimulated HaCaT cells. Mol. Med. Rep. 24: 509.
  14. Formica JV, Regelson W. 1995. Review of the biology of quercetin and related bioflavonoids. Food Chem. Toxicol. 33: 1061-1080. https://doi.org/10.1016/0278-6915(95)00077-1
  15. Kawabata K, Mukai R, Ishisaka A. 2015. Quercetin and related polyphenols: new insights and implications for their bioactivity and bioavailability. Food Funct. 6: 1399-1417. https://doi.org/10.1039/C4FO01178C
  16. Marchetti F, De Santi C, Vietri M, Pietrabissa A, Spisni R, Mosca F, et al. 2001. Differential inhibition of human liver and duodenum sulphotransferase activities by quercetin, a flavonoid present in vegetables, fruit and wine. Xenobiotica 31: 841-847. https://doi.org/10.1080/00498250110069159
  17. Luo M, Tian R, Yang Z, Peng YY, Lu N. 2019. Quercetin suppressed NADPH oxidase-derived oxidative stress via heme oxygenase-1 induction in macrophages. Arch. Biochem. Biophys. 671: 69-76. https://doi.org/10.1016/j.abb.2019.06.007
  18. Cheng SC, Huang WC, JH SP, Wu YH, Cheng CY. 2019. Quercetin inhibits the production of IL-1beta-induced inflammatory cytokines and chemokines in ARPE-19 cells via the MAPK and NF-B signaling pathways. Int. J. Mol. Sci. 20: 2957.
  19. Cheng SC, Wu YH, Huang WC, Pang JS, Huang TH, Cheng CY. 2019. Anti-inflammatory property of quercetin through downregulation of ICAM-1 and MMP-9 in TNF-alpha-activated retinal pigment epithelial cells. Cytokine 116: 48-60. https://doi.org/10.1016/j.cyto.2019.01.001
  20. Lei D, Chengcheng L, Xuan Q, Yibing C, Lei W, Hao Y, et al. 2019. Quercetin inhibited mesangial cell proliferation of early diabetic nephropathy through the Hippo pathway. Pharmacol. Res. 146: 104320.
  21. Bule M, Abdurahman A, Nikfar S, Abdollahi M, Amini M. 2019. Antidiabetic effect of quercetin: A systematic review and meta-analysis of animal studies. Food Chem. Toxicol. 125: 494-502. https://doi.org/10.1016/j.fct.2019.01.037
  22. Dabeek WM, Marra MV. 2019. Dietary quercetin and Kaempferol: bioavailability and potential cardiovascular-related bioactivity in humans. Nutrients 11: 2288.
  23. Ward AB, Mir H, Kapur N, Gales DN, Carriere PP, Singh S. 2018. Quercetin inhibits prostate cancer by attenuating cell survival and inhibiting anti-apoptotic pathways. World J. Surg. Oncol. 16: 108.
  24. Chen CY, Kao CL, Liu CM. 2018. The cancer prevention, anti-inflammatory and anti-oxidation of bioactive phytochemicals targeting the TLR4 signaling pathway. Int. J. Mol. Sci. 19: 2729.
  25. Wu MJ, Wu XL, Zhang DQ, Qiu F, Ding L-Q, Ma H-L, et al. 2017. Metabolic profiling of quercetin in rats using ultra-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry. Biomed. Chromatogr. 31. doi: 10.1002/bmc.4016.Epub 2017 July 4.
  26. Xu J, Li X, Zhang P, Li ZL, Wang Y. 2005. Antiinflammatory constituents from the roots of Smilax bockii warb. Arch Pharm. Res. 28: 395-399. https://doi.org/10.1007/BF02977667
  27. Park JW, Kim YJ, Shin IS, Kwon OK, Hong JM, Shin NR, et al. 2016. Type III secretion system of Pseudomonas aeruginosa affects matrix metalloproteinase 12 (MMP-12) and MMP-13 expression via nuclear factor kB signaling in human carcinoma epithelial cells and a pneumonia mouse model. J. Infect. Dis. 214: 962-969. https://doi.org/10.1093/infdis/jiw278
  28. Ha UH, Kim J, Badrane H, Jia J, Baker HV, Wu D, et al. 2004. An in vivo inducible gene of Pseudomonas aeruginosa encodes an anti-ExsA to suppress the type III secretion system. Mol. Microbiol. 54: 307-320. https://doi.org/10.1111/j.1365-2958.2004.04282.x
  29. Ha U, Jin S. 2001. Growth phase-dependent invasion of Pseudomonas aeruginosa and its survival within HeLa cells. Infect. Immun. 69: 4398-4406. https://doi.org/10.1128/IAI.69.7.4398-4406.2001
  30. Park JW, Shin IS, Ha UH, Oh SR, Kim JH, Ahn KS. 2015. Pathophysiological changes induced by Pseudomonas aeruginosa infection are involved in MMP-12 and MMP-13 upregulation in human carcinoma epithelial cells and a pneumonia mouse model. Infect. Immun. 83: 4791-4799. https://doi.org/10.1128/IAI.00619-15
  31. Shin HS, Lee JH, Paek SH, Jung YW, Ha UH. 2013. Pseudomonas aeruginosa-dependent upregulation of TLR2 influences host responses to a secondary Staphylococcus aureus infection. Pathog. Dis. 69: 149-156. https://doi.org/10.1111/2049-632X.12074
  32. El-Mowafy SA, Abd El Galil KH, El-Messery SM, Shaaban MI. 2014. Aspirin is an efficient inhibitor of quorum sensing, virulence and toxins in Pseudomonas aeruginosa. Microb. Pathog. 74: 25-32. https://doi.org/10.1016/j.micpath.2014.07.008
  33. Kim J, Ahn K, Min S, Jia J, Ha U, Wu D, et al. 2005. Factors triggering type III secretion in Pseudomonas aeruginosa. Microbiology 151(Pt 11): 3575-3587. https://doi.org/10.1099/mic.0.28277-0
  34. Anantharajah A, Buyck JM, Faure E, Glupczynski, Rodriguez-Villalobos H, Vos DD, et al. 2015. Correlation between cytotoxicity induced by Pseudomonas aeruginosa clinical isolates from acute infections and IL-1beta secretion in a model of human THP-1 monocytes. Pathog. Dis. 73: ftv049.
  35. Sofia MK, Dziejman M. 2021. DksA coordinates bile-mediated regulation of virulence-associated phenotypes in type three secretion system-positive Vibrio cholerae. Microbiology (Reading) 167: 001006
  36. Galle M, Schotte P, Haegman M, Wullaert A, Yang HJ, Jin S, et al. 2008. The Pseudomonas aeruginosa type III secretion system plays a dual role in the regulation of caspase-1 mediated IL-1beta maturation. J. Cell. Mol. Med.12: 1767-1776. https://doi.org/10.1111/j.1582-4934.2007.00190.x
  37. Cendra MDM, Christodoulides M, Hossain P. 2017. Signaling mediated by toll-like receptor 5 sensing of Pseudomonas aeruginosa flagellin influences IL-1beta and IL-18 production by primary fibroblasts derived from the human cornea. Front. Cell. Infect. Microbiol. 7: 130.
  38. Galle M, Jin S, Bogaert P, Haegman M, Vandenabeele P, Beyaert R. 2012. The Pseudomonas aeruginosa type III secretion system has an exotoxin S/T/Y independent pathogenic role during acute lung infection. PLoS One 7: e41547.
  39. Dosunmu EF, Emeh RO, Dixit S, Bakeer M, Coats MT, Owen DR, et al. 2017. The anti-microbial peptide TP359 attenuates inflammation in human lung cells infected with Pseudomonas aeruginosa via TLR5 and MAPK pathways. PLoS One 12: e0176640.
  40. Becker C, Fantini MC, Schramm C, Lehr HA, Wirtz Stefan, et al. 2004. TGF-beta suppresses tumor progression in colon cancer by inhibition of IL-6 trans-signaling. Immunity 21: 491-501. https://doi.org/10.1016/j.immuni.2004.07.020
  41. Lee HS, Paik JH, Kwon OK, Paryanto I, Yuniato P, Ryu HW, et al. 2021. Anti-inflammatory effects of Lagerstroemia ovalifolia Teijsm. & Binn. in TNFalpha/IFN gamma-stimulated keratinocytes. Evid. Based Complement. Alternat. Med. 2021: 2439231.
  42. Lin CK, Kazmierczak BI. 2017. Inflammation: a double-edged sword in the response to Pseudomonas aeruginosa infection. J. Innate. Immun. 9: 250-261. https://doi.org/10.1159/000455857
  43. Comalada M, Camuesco D, Sierra S, Ballester I, Xaus J, Galvez J, et al. 2005. In vivo quercitrin anti-inflammatory effect involves release of quercetin, which inhibits inflammation through down-regulation of the NF-kappaB pathway. Eur. J. Immunol. 35: 584-592. https://doi.org/10.1002/eji.200425778
  44. Gerin F, Sener U, Erman H, Yilmaz A, Aydin B, Armutcu F, et al. 2016. The effects of quercetin on acute lung injury and biomarkers of inflammation and oxidative stress in the rat model of sepsis. Inflammation 39: 700-705. https://doi.org/10.1007/s10753-015-0296-9
  45. Li G, Shen X, Wei Y, Si X, Deng X, Wang J. 2019. Quercetin reduces Streptococcus suis virulence by inhibiting suilysin activity and inflammation. Int. Immunopharmacol. 69: 71-78. https://doi.org/10.1016/j.intimp.2019.01.017
  46. Park MH, Kim SY, Roh EY, Lee HS. 2017. Difference of type 3 secretion system (T3SS) effector gene genotypes (exoU and exoS) and its implication to antibiotics resistances in isolates of Pseudomonas aeruginosa from chronic otitis media. Auris Nasus Larynx 44: 258-265. https://doi.org/10.1016/j.anl.2016.07.005
  47. Rangel SM, Diaz MH, Knoten CA, Zhang A, Hauser AR. 2015. The role of ExoS in dissemination of Pseudomonas aeruginosa during Pneumonia. PLoS Pathog. 11: e1004945.
  48. Lombardi C, Tolchard J, Bouillot S, Signor L, Gebus C, David L, et al. 2019. Structural and runctional characterization of the type three secretion system (T3SS) needle of Pseudomonas aeruginosa. Front. Microbiol. 10: 573.
  49. Tang Y, Romano FB, Brena M, Heuck AP. 2018. The Pseudomonas aeruginosa type III secretion translocator PopB assists the insertion of the PopD translocator into host cell membranes. J. Biol. Chem. 293: 8982-8993. https://doi.org/10.1074/jbc.RA118.002766
  50. Thornberry NA, Bull HG, Calaycay JR, Chapman KT, Howard AD, Kostura MJ, et al. 1992. A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 356: 768-774. https://doi.org/10.1038/356768a0
  51. Ulland TK, Ferguson PJ, Sutterwala FS. 2015. Evasion of inflammasome activation by microbial pathogens. J. Clin. Invest. 125: 469-477. https://doi.org/10.1172/JCI75254
  52. Zhao Y, Shao F. 2015. The NAIP-NLRC4 inflammasome in innate immune detection of bacterial flagellin and type III secretion apparatus. Immunol. Rev. 265: 85-102. https://doi.org/10.1111/imr.12293