DOI QR코드

DOI QR Code

Peripheral Neuron-Organoid Interaction Induces Colonic Epithelial Differentiation via Non-Synaptic Substance P Secretion

  • Young Hyun Che (Department of Biomedical Science, Graduate School, Kyung Hee University) ;
  • In Young Choi (The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine) ;
  • Chan Eui Song (Department of Biomedical Science, Graduate School, Kyung Hee University) ;
  • Chulsoo Park (Department of Biomedical Science, Graduate School, Kyung Hee University) ;
  • Seung Kwon Lim (Department of Medicine, Graduate School, Kyung Hee University) ;
  • Jeong Hee Kim (Department of Biomedical Science, Graduate School, Kyung Hee University) ;
  • Su Haeng Sung (Department of Pathology, College of Medicine, Kyung Hee University) ;
  • Jae Hoon Park (Department of Pathology, College of Medicine, Kyung Hee University) ;
  • Sun Lee (Department of Pathology, College of Medicine, Kyung Hee University) ;
  • Yong Jun Kim (Department of Biomedical Science, Graduate School, Kyung Hee University)
  • Received : 2023.03.08
  • Accepted : 2023.04.06
  • Published : 2023.08.30

Abstract

Background and Objectives: The colonic epithelial layer is a complex structure consisting of multiple cell types that regulate various aspects of colonic physiology, yet the mechanisms underlying epithelial cell differentiation during development remain unclear. Organoids have emerged as a promising model for investigating organogenesis, but achieving organ-like cell configurations within colonic organoids is challenging. Here, we investigated the biological significance of peripheral neurons in the formation of colonic organoids. Methods and Results: Colonic organoids were co-cultured with human embryonic stem cell (hESC)-derived peripheral neurons, resulting in the morphological maturation of columnar epithelial cells, as well as the presence of enterochromaffin cells. Substance P released from immature peripheral neurons played a critical role in the development of colonic epithelial cells. These findings highlight the vital role of inter-organ interactions in organoid development and provide insights into colonic epithelial cell differentiation mechanisms. Conclusions: Our results suggest that the peripheral nervous system may have a significant role in the development of colonic epithelial cells, which could have important implications for future studies of organogenesis and disease modeling.

Keywords

Acknowledgement

This study was supported by the National Research Foundation of Korea (NRF-2022M3A9H1016308, NRF-2022R1F1A1066611, NRF-2023R1A2C2007120), the Ministry of SMEs and startups (S3098634), the Korean Fund for Regenerative Medicine (2021M3E5E5096744), and the KIST Institutional Program (Project No.2Z05790-19-037).

References

  1. Frazer LC, Good M. Intestinal epithelium in early life. Mucosal Immunol 2022;15:1181-1187  https://doi.org/10.1038/s41385-022-00579-8
  2. Martini E, Krug SM, Siegmund B, Neurath MF, Becker C. Mend Your fences: the epithelial barrier and its relationship with mucosal immunity in inflammatory bowel disease. Cell Mol Gastroenterol Hepatol 2017;4:33-46  https://doi.org/10.1016/j.jcmgh.2017.03.007
  3. Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ, Clevers H. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 2007;449:1003-1007  https://doi.org/10.1038/nature06196
  4. Lancaster MA, Knoblich JA. Organogenesis in a dish: modeling development and disease using organoid technologies. Science 2014;345:1247125 
  5. Fujii M, Matano M, Toshimitsu K, Takano A, Mikami Y, Nishikori S, Sugimoto S, Sato T. Human intestinal organoids maintain self-renewal capacity and cellular diversity in niche-inspired culture condition. Cell Stem Cell 2018;23:787-793.e6  https://doi.org/10.1016/j.stem.2018.11.016
  6. Najjar SA, Davis BM, Albers KM. Epithelial-neuronal communication in the colon: implications for visceral pain. Trends Neurosci 2020;43:170-181  https://doi.org/10.1016/j.tins.2019.12.007
  7. Walsh KT, Zemper AE. The enteric nervous system for epithelial researchers: basic anatomy, techniques, and interactions with the epithelium. Cell Mol Gastroenterol Hepatol 2019;8:369-378  https://doi.org/10.1016/j.jcmgh.2019.05.003
  8. Ten Hove AS, Seppen J, de Jonge WJ. Neuronal innervation of the intestinal crypt. Am J Physiol Gastrointest Liver Physiol 2021;320:G193-G205  https://doi.org/10.1152/ajpgi.00239.2020
  9. Zhang W, Lyu M, Bessman NJ, Xie Z, Arifuzzaman M, Yano H, Parkhurst CN, Chu C, Zhou L, Putzel GG, Li TT, Jin WB, Zhou J; JRI Live Cell Bank; Hu H, Tsou AM, Guo CJ, Artis D. Gut-innervating nociceptors regulate the intestinal microbiota to promote tissue protection. Cell 2022;185:4170-4189.e20  https://doi.org/10.1016/j.cell.2022.09.008
  10. Yang D, Jacobson A, Meerschaert KA, Sifakis JJ, Wu M, Chen X, Yang T, Zhou Y, Anekal PV, Rucker RA, Sharma D, Sontheimer-Phelps A, Wu GS, Deng L, Anderson MD, Choi S, Neel D, Lee N, Kasper DL, Jabri B, Huh JR, Johansson M, Thiagarajah JR, Riesenfeld SJ, Chiu IM. Nociceptor neurons direct goblet cells via a CGRP-RAMP1 axis to drive mucus production and gut barrier protection. Cell 2022;185:4190-4205.e25  https://doi.org/10.1016/j.cell.2022.09.024
  11. Worthington JJ, Reimann F, Gribble FM. Enteroendocrine cells-sensory sentinels of the intestinal environment and orchestrators of mucosal immunity. Mucosal Immunol 2018;11:3-20  https://doi.org/10.1038/mi.2017.73
  12. Nagy N, Goldstein AM. Enteric nervous system development: a crest cell's journey from neural tube to colon. Semin Cell Dev Biol 2017;66:94-106  https://doi.org/10.1016/j.semcdb.2017.01.006
  13. Lyoo KS, Kim HM, Lee B, Che YH, Kim SJ, Song D, Hwang W, Lee S, Park JH, Na W, Yun SP, Kim YJ. Direct neuronal infection of SARS-CoV-2 reveals cellular and molecular pathology of chemosensory impairment of COVID19 patients. Emerg Microbes Infect 2022;11:406-411  https://doi.org/10.1080/22221751.2021.2024095
  14. Crespo M, Vilar E, Tsai SY, Chang K, Amin S, Srinivasan T, Zhang T, Pipalia NH, Chen HJ, Witherspoon M, Gordillo M, Xiang JZ, Maxfield FR, Lipkin S, Evans T, Chen S. Colonic organoids derived from human induced pluripotent stem cells for modeling colorectal cancer and drug testing. Nat Med 2017;23:878-884  https://doi.org/10.1038/nm.4355
  15. Munera JO, Sundaram N, Rankin SA, Hill D, Watson C, Mahe M, Vallance JE, Shroyer NF, Sinagoga KL, Zarzoso-Lacoste A, Hudson JR, Howell JC, Chatuvedi P, Spence JR, Shannon JM, Zorn AM, Helmrath MA, Wells JM. Differentiation of human pluripotent stem cells into colonic organoids via transient activation of BMP signaling. Cell Stem Cell 2017;21:51-64.e6  https://doi.org/10.1016/j.stem.2017.05.020
  16. Kwon O, Yu WD, Son YS, Jung KB, Lee H, Son MY. Generation of highly expandable intestinal spheroids composed of stem cells. Int J Stem Cells 2022;15:104-111  https://doi.org/10.15283/ijsc21209
  17. Mukherjee-Clavin B, Mi R, Kern B, Choi IY, Lim H, Oh Y, Lannon B, Kim KJ, Bell S, Hur JK, Hwang W, Che YH, Habib O, Baloh RH, Eggan K, Brandacher G, Hoke A, Studer L, Kim YJ, Lee G. Comparison of three congruent patient-specific cell types for the modelling of a human genetic Schwann-cell disorder. Nat Biomed Eng 2019;3:571-582  https://doi.org/10.1038/s41551-019-0381-8
  18. Oh Y, Cho GS, Li Z, Hong I, Zhu R, Kim MJ, Kim YJ, Tampakakis E, Tung L, Huganir R, Dong X, Kwon C, Lee G. Functional coupling with cardiac muscle promotes maturation of hPSC-derived sympathetic neurons. Cell Stem Cell 2016;19:95-106  https://doi.org/10.1016/j.stem.2016.05.002
  19. Gu W, Wang H, Huang X, Kraiczy J, Singh PNP, Ng C, Dagdeviren S, Houghton S, Pellon-Cardenas O, Lan Y, Nie Y, Zhang J, Banerjee KK, Onufer EJ, Warner BW, Spence J, Scherl E, Rafii S, Lee RT, Verzi MP, Redmond D, Longman R, Helin K, Shivdasani RA, Zhou Q. SATB2 preserves colon stem cell identity and mediates ileum-colon conversion via enhancer remodeling. Cell Stem Cell 2022;29:101-115.e10  https://doi.org/10.1016/j.stem.2021.09.004
  20. Dekkers JF, Wiegerinck CL, de Jonge HR, Bronsveld I, Janssens HM, de Winter-de Groot KM, Brandsma AM, de Jong NW, Bijvelds MJ, Scholte BJ, Nieuwenhuis EE, van den Brink S, Clevers H, van der Ent CK, Middendorp S, Beekman JM. A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat Med 2013;19:939-945  https://doi.org/10.1038/nm.3201
  21. Kim YJ, Lim H, Li Z, Oh Y, Kovlyagina I, Choi IY, Dong X, Lee G. Generation of multipotent induced neural crest by direct reprogramming of human postnatal fibroblasts with a single transcription factor. Cell Stem Cell 2014;15:497-506  https://doi.org/10.1016/j.stem.2014.07.013
  22. Ramalingam S, Daughtridge GW, Johnston MJ, Gracz AD, Magness ST. Distinct levels of Sox9 expression mark colon epithelial stem cells that form colonoids in culture. Am J Physiol Gastrointest Liver Physiol 2012;302:G10-G20  https://doi.org/10.1152/ajpgi.00277.2011
  23. Linan-Rico A, Ochoa-Cortes F, Beyder A, Soghomonyan S, Zuleta-Alarcon A, Coppola V, Christofi FL. Mechanosensory signaling in enterochromaffin cells and 5-HT release: potential implications for gut inflammation. Front Neurosci 2016;10:564 
  24. Goode T, O'Connor T, Hopkins A, Moriarty D, O'Sullivan GC, Collins JK, O'Donoghue D, Baird AW, O'Connell J, Shanahan F. Neurokinin-1 receptor (NK-1R) expression is induced in human colonic epithelial cells by proinflammatory cytokines and mediates proliferation in response to substance P. J Cell Physiol 2003;197:30-41  https://doi.org/10.1002/jcp.10234
  25. Nerurkar NL, Mahadevan L, Tabin CJ. BMP signaling controls buckling forces to modulate looping morphogenesis of the gut. Proc Natl Acad Sci U S A 2017;114:2277-2282  https://doi.org/10.1073/pnas.1700307114
  26. Castillo D, Puig S, Iglesias M, Seoane A, de Bolos C, Munitiz V, Parrilla P, Comerma L, Poulsom R, Krishnadath KK, Grande L, Pera M. Activation of the BMP4 pathway and early expression of CDX2 characterize non-specialized columnar metaplasia in a human model of Barrett's esophagus. J Gastrointest Surg 2012;16:227-237; discussion 237  https://doi.org/10.1007/s11605-011-1758-5
  27. Zhou G, Sun YG, Wang HB, Wang WQ, Wang XW, Fang DC. Acid and bile salt up-regulate BMP4 expression in human esophageal epithelium cells. Scand J Gastroenterol 2009;44:926-932  https://doi.org/10.1080/00365520902998661
  28. Moore-Scott BA, Opoka R, Lin SC, Kordich JJ, Wells JM. Identification of molecular markers that are expressed in discrete anterior-posterior domains of the endoderm from the gastrula stage to mid-gestation. Dev Dyn 2007;236:1997-2003  https://doi.org/10.1002/dvdy.21204
  29. Parikh K, Antanaviciute A, Fawkner-Corbett D, Jagielowicz M, Aulicino A, Lagerholm C, Davis S, Kinchen J, Chen HH, Alham NK, Ashley N, Johnson E, Hublitz P, Bao L, Lukomska J, Andev RS, Bjorklund E, Kessler BM, Fischer R, Goldin R, Koohy H, Simmons A. Colonic epithelial cell diversity in health and inflammatory bowel disease. Nature 2019;567:49-55  https://doi.org/10.1038/s41586-019-0992-y
  30. Dharshika C, Gulbransen BD. Enteric neuromics: how high-throughput "Omics" deepens our understanding of enteric nervous system genetic architecture. Cell Mol Gastroenterol Hepatol 2023;15:487-504  https://doi.org/10.1016/j.jcmgh.2022.10.019
  31. Uesaka T, Young HM, Pachnis V, Enomoto H. Development of the intrinsic and extrinsic innervation of the gut. Dev Biol 2016;417:158-167  https://doi.org/10.1016/j.ydbio.2016.04.016
  32. McMahon D. Chemical messengers in development: a hypothesis. Science 1974;185:1012-1021  https://doi.org/10.1126/science.185.4156.1012
  33. LoTurco JJ, Owens DF, Heath MJ, Davis MB, Kriegstein AR. GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron 1995;15:1287-1298  https://doi.org/10.1016/0896-6273(95)90008-X
  34. Demarque M, Represa A, Becq H, Khalilov I, Ben-Ari Y, Aniksztejn L. Paracrine intercellular communication by a Ca2+- and SNARE-independent release of GABA and glutamate prior to synapse formation. Neuron 2002;36:1051-1061  https://doi.org/10.1016/S0896-6273(02)01053-X
  35. Ben-Ari Y, Gaiarsa JL, Tyzio R, Khazipov R. GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiol Rev 2007;87:1215-1284  https://doi.org/10.1152/physrev.00017.2006
  36. Yun W, Kim YJ, Lee G. Direct conversion to achieve glial cell fates: oligodendrocytes and Schwann cells. Int J Stem Cells 2022;15:14-25  https://doi.org/10.15283/ijsc22008
  37. Wang H, Foong JPP, Harris NL, Bornstein JC. Enteric neuroimmune interactions coordinate intestinal responses in health and disease. Mucosal Immunol 2022;15:27-39  https://doi.org/10.1038/s41385-021-00443-1
  38. Dunlop SP, Jenkins D, Neal KR, Spiller RC. Relative importance of enterochromaffin cell hyperplasia, anxiety, and depression in postinfectious IBS. Gastroenterology 2003;125:1651-1659  https://doi.org/10.1053/j.gastro.2003.09.028
  39. Barbara G, Stanghellini V, De Giorgio R, Cremon C, Cottrell GS, Santini D, Pasquinelli G, Morselli-Labate AM, Grady EF, Bunnett NW, Collins SM, Corinaldesi R. Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome. Gastroenterology 2004;126:693-702  https://doi.org/10.1053/j.gastro.2003.11.055
  40. Atkinson W, Lockhart S, Whorwell PJ, Keevil B, Houghton LA. Altered 5-hydroxytryptamine signaling in patients with constipation- and diarrhea-predominant irritable bowel syndrome. Gastroenterology 2006;130:34-43  https://doi.org/10.1053/j.gastro.2005.09.031
  41. Barbara G, Wang B, Stanghellini V, de Giorgio R, Cremon C, Di Nardo G, Trevisani M, Campi B, Geppetti P, Tonini M, Bunnett NW, Grundy D, Corinaldesi R. Mast cell-dependent excitation of visceral-nociceptive sensory neurons in irritable bowel syndrome. Gastroenterology 2007;132:26-37  https://doi.org/10.1053/j.gastro.2006.11.039
  42. Park NY, Koh A. From the dish to the real world: modeling interactions between the gut and microorganisms in gut organoids by tailoring the gut milieu. Int J Stem Cells 2022;15:70-84  https://doi.org/10.15283/ijsc21243
  43. Lee H, Son MY. Current challenges associated with the use of human induced pluripotent stem cell-derived organoids in regenerative medicine. Int J Stem Cells 2021;14:9-20 https://doi.org/10.15283/ijsc20140