DOI QR코드

DOI QR Code

The Calcineurin-Drp1-Mediated Mitochondrial Fragmentation is Aligned with the Differentiation of c-Kit Cardiac Progenitor Cells

  • Attaur Rahman (Department of Medicine and Therapeutics (MEDT), Faculty of Medicine, Chinese University of Hong Kong (CUHK)) ;
  • Yuhao Li (Department of Medicine and Therapeutics (MEDT), Faculty of Medicine, Chinese University of Hong Kong (CUHK)) ;
  • Nur Izzah Ismail (Department of Medicine and Therapeutics (MEDT), Faculty of Medicine, Chinese University of Hong Kong (CUHK)) ;
  • To-Kiu Chan (Department of Medicine and Therapeutics (MEDT), Faculty of Medicine, Chinese University of Hong Kong (CUHK)) ;
  • Yuzhen Li (Department of Basic Medicine, Graduate School of PLA General Hospital) ;
  • Dachun Xu (Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine) ;
  • Hao Zhou (Department of Cardiology, Chinese People's Liberation Army General Hospital) ;
  • Sang-Bing Ong (Department of Medicine and Therapeutics (MEDT), Faculty of Medicine, Chinese University of Hong Kong (CUHK))
  • Received : 2022.08.07
  • Accepted : 2022.11.07
  • Published : 2023.05.30

Abstract

Objective: The heart contains a pool of c-kit+ progenitor cells which is believed to be able to regenerate. The differentiation of these progenitor cells is reliant on different physiological cues. Unraveling the underlying signals to direct differentiation of progenitor cells will be beneficial in controlling progenitor cell fate. In this regard, the role of the mitochondria in mediating cardiac progenitor cell fate remains unclear. Specifically, the association between changes in mitochondrial morphology with the differentiation status of c-kit+ CPCs remains elusive. In this study, we investigated the relationship between mitochondrial morphology and the differentiation status of c-kit+ progenitor cells. Methods and Results: c-kit+ CPCs were isolated from 2-month-old male wild-type FVB mice. To activate differentiation, CPCs were incubated in α-minimal essential medium containing 10 nM dexamethasone for up to 7 days. To inhibit Drp1-mediated mitochondrial fragmentation, either 10 μM or 50 μM mdivi-1 was administered once at Day 0 and again at Day 2 of differentiation. To inhibit calcineurin, either 1 μM or 5 μM ciclosporin-A (CsA) was administered once at Day 0 and again at Day 2 of differentiation. Dexamethasone-induced differentiation of c-kit+ progenitor cells is aligned with fragmentation of the mitochondria via a calcineurin-Drp1 pathway. Pharmacologically inhibiting mitochondrial fragmentation retains the undifferentiated state of the c-kit+ progenitor cells. Conclusions: The findings from this study provide an alternative view of the role of mitochondrial fusion-fission in the differentiation of cardiac progenitor cells and the potential of pharmacologically manipulating the mitochondria to direct progenitor cell fate.

Keywords

Acknowledgement

Attaur Rahman is a CUHK Department of Medicine & Therapeutics (MEDT)-funded PhD student. Yuhao Li is a CUHK Vice-Chancellor's PhD Scholarship holder. Sang-Bing Ong is supported by the Early Career Scheme (ECS) 2022/23 (CUHK 24110822) from the Research Grants Council of Hong Kong, as well as a Direct Grant for Research 2020/21 [2020.035], a Project Impact Enhancement Fund (PIEF) [PIEF/Ph2/COVID/08], Improvement on Competitiveness in Hiring New Faculties Funding Scheme from CUHK as well as the Centre for Cardiovascular Genomics and Medicine (CCGM) of the Lui Che Woo Institute of Innovative Medicine CUHK.

References

  1. Fischer KM, Cottage CT, Wu W, Din S, Gude NA, Avitabile D, Quijada P, Collins BL, Fransioli J, Sussman MA. Enhancement of myocardial regeneration through genetic engineering of cardiac progenitor cells expressing Pim-1 kinase. Circulation 2009;120:2077-2087
  2. Wang X, Hu Q, Nakamura Y, Lee J, Zhang G, From AH, Zhang J. The role of the sca-1+/CD31- cardiac progenitor cell population in postinfarction left ventricular remodeling. Stem Cells 2006;24:1779-1788
  3. Li S, Guo K, Wu J, Guo Z, Li A. Altered expression of c-kit and nanog in a rat model of Adriamycin-induced chronic heart failure. Am J Cardiovasc Dis 2017;7:57-63
  4. Zakharova L, Nural-Guvener H, Nimlos J, Popovic S, Gaballa MA. Chronic heart failure is associated with transforming growth factor beta-dependent yield and functional decline in atrial explant-derived c-Kit+ cells. J Am Heart Assoc 2013;2:e000317
  5. Zakharova L, Nural-Guvener H, Feehery L, Popovic- Sljukic S, Gaballa MA. Transplantation of epigenetically modified adult cardiac c-Kit+ cells retards remodeling and improves cardiac function in ischemic heart failure model. Stem Cells Transl Med 2015;4:1086-1096
  6. Liu Q, Yang R, Huang X, Zhang H, He L, Zhang L, Tian X, Nie Y, Hu S, Yan Y, Zhang L, Qiao Z, Wang QD, Lui KO, Zhou B. Genetic lineage tracing identifies in situ Kitexpressing cardiomyocytes. Cell Res 2016;26:119-130
  7. Castaldo C, Di Meglio F, Nurzynska D, Romano G, Maiello C, Bancone C, Muller P, Bohm M, Cotrufo M, Montagnani S. CD117-positive cells in adult human heart are localized in the subepicardium, and their activation is associated with laminin-1 and alpha6 integrin expression. Stem Cells 2008;26:1723-1731
  8. Wang X, Li Q, Hu Q, Suntharalingam P, From AH, Zhang J. Intra-myocardial injection of both growth factors and heart derived Sca-1+/CD31- cells attenuates post-MI LV remodeling more than does cell transplantation alone: neither intervention enhances functionally significant cardiomyocyte regeneration. PLoS One 2014;9:e95247
  9. Ellison GM, Vicinanza C, Smith AJ, Aquila I, Leone A, Waring CD, Henning BJ, Stirparo GG, Papait R, Scarfo M, Agosti V, Viglietto G, Condorelli G, Indolfi C, Ottolenghi S, Torella D, Nadal-Ginard B. Adult c-kit(pos) cardiac stem cells are necessary and sufficient for functional cardiac regeneration and repair. Cell 2013;154:827-842
  10. Lees JG, Kong AM, Chen YC, Sivakumaran P, Hernandez D, Pebay A, Harvey AJ, Gardner DK, Lim SY. Mitochondrial fusion by M1 promotes embryoid body cardiac differentiation of human pluripotent stem cells. Stem Cells Int 2019;2019:6380135
  11. Lee JE, Seo BJ, Han MJ, Hong YJ, Hong K, Song H, Lee JW, Do JT. Changes in the expression of mitochondrial morphology-related genes during the differentiation of murine embryonic stem cells. Stem Cells Int 2020;2020:9369268
  12. Varum S, Rodrigues AS, Moura MB, Momcilovic O, Easley CA 4th, Ramalho-Santos J, Van Houten B, Schatten G. Energy metabolism in human pluripotent stem cells and their differentiated counterparts. PLoS One 2011;6:e20914
  13. Ong SB, Hausenloy DJ. Mitochondrial morphology and cardiovascular disease. Cardiovasc Res 2010;88:16-29
  14. Ong SB, Hausenloy DJ. Mitochondrial dynamics as a therapeutic target for treating cardiac diseases. Handb Exp Pharmacol 2017;240:251-279
  15. Ishihara N, Eura Y, Mihara K. Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity. J Cell Sci 2004;117(Pt 26):6535-6546
  16. Olichon A, Baricault L, Gas N, Guillou E, Valette A, Belenguer P, Lenaers G. Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J Biol Chem 2003;278:7743-7746
  17. Cereghetti GM, Stangherlin A, Martins de Brito O, Chang CR, Blackstone C, Bernardi P, Scorrano L. Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. Proc Natl Acad Sci U S A 2008;105:15803-15808
  18. Fransioli J, Bailey B, Gude NA, Cottage CT, Muraski JA, Emmanuel G, Wu W, Alvarez R, Rubio M, Ottolenghi S, Schaefer E, Sussman MA. Evolution of the c-kit-positive cell response to pathological challenge in the myocardium. Stem Cells 2008;26:1315-1324
  19. Orogo AM, Gonzalez ER, Kubli DA, Baptista IL, Ong SB, Prolla TA, Sussman MA, Murphy AN, Gustafsson AB. Accumulation of mitochondrial DNA mutations disrupts cardiac progenitor cell function and reduces survival. J Biol Chem 2015;290:22061-22075 Erratum in: J Biol Chem 2017;292:11348
  20. Ong SB, Subrayan S, Lim SY, Yellon DM, Davidson SM, Hausenloy DJ. Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury. Circulation 2010;121:2012-2022
  21. San Martin N, Cervera AM, Cordova C, Covarello D, McCreath KJ, Galvez BG. Mitochondria determine the differentiation potential of cardiac mesoangioblasts. Stem Cells 2011;29:1064-1074
  22. Jin J, Xuan QK, Zhou LJ, Shi CM, Song GX, Sheng YH, Qian LM. Dynamic mitochondrial changes during differentiation of P19 embryonic carcinoma cells into cardiomyocytes. Mol Med Rep 2014;10:761-766
  23. Wang L, Ye X, Zhao Q, Zhou Z, Dan J, Zhu Y, Chen Q, Liu L. Drp1 is dispensable for mitochondria biogenesis in induction to pluripotency but required for differentiation of embryonic stem cells. Stem Cells Dev 2014;23:2422-2434
  24. Fu W, Liu Y, Yin H. Mitochondrial dynamics: biogenesis, fission, fusion, and mitophagy in the regulation of stem cell behaviors. Stem Cells Int 2019;2019:9757201
  25. Vazquez-Martin A, Cufi S, Corominas-Faja B, Oliveras- Ferraros C, Vellon L, Menendez JA. Mitochondrial fusion by pharmacological manipulation impedes somatic cell reprogramming to pluripotency: new insight into the role of mitophagy in cell stemness. Aging (Albany NY) 2012;4:393-401
  26. Kasahara A, Cipolat S, Chen Y, Dorn GW 2nd, Scorrano L. Mitochondrial fusion directs cardiomyocyte differentiation via calcineurin and Notch signaling. Science 2013;342:734-737
  27. Folmes CD, Nelson TJ, Martinez-Fernandez A, Arrell DK, Lindor JZ, Dzeja PP, Ikeda Y, Perez-Terzic C, Terzic A. Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab 2011;14:264-271
  28. Prieto J, Seo AY, Leon M, Santacatterina F, Torresano L, Palomino-Schatzlein M, Gimenez K, Vallet-Sanchez A, Ponsoda X, Pineda-Lucena A, Cuezva JM, Lippincott- Schwartz J, Torres J. MYC induces a hybrid energetics program early in cell reprogramming. Stem Cell Reports 2018;11:1479-1492
  29. Chen W, Sun Y, Sun Q, Zhang J, Jiang M, Chang C, Huang X, Wang C, Wang P, Zhang Z, Chen X, Wang Y. MFN2 plays a distinct role from MFN1 in regulating spermatogonial differentiation. Stem Cell Reports 2020;14:803-817
  30. Maxwell JT, Wagner MB, Davis ME. Electrically induced calcium handling in cardiac progenitor cells. Stem Cells Int 2016;2016:8917380
  31. Vigneault P, Naud P, Qi X, Xiao J, Villeneuve L, Davis DR, Nattel S. Calcium-dependent potassium channels control proliferation of cardiac progenitor cells and bone marrow- derived mesenchymal stem cells. J Physiol 2018; 596:2359-2379
  32. Park JS, Kim YS, Yoo MA. The role of p38b MAPK in age-related modulation of intestinal stem cell proliferation and differentiation in Drosophila. Aging (Albany NY) 2009;1:637-651
  33. Bae YK, Kwon JH, Kim M, Kim GH, Choi SJ, Oh W, Yang YS, Jin HJ, Jeon HB. Intracellular calcium determines the adipogenic differentiation potential of human umbilical cord blood-derived mesenchymal stem cells via the Wnt5a/β-catenin signaling pathway. Stem Cells Int 2018;2018:6545071
  34. Cribbs JT, Strack S. Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep 2007;8:939-944
  35. Li X, Zhu L, Yang A, Lin J, Tang F, Jin S, Wei Z, Li J, Jin Y. Calcineurin-NFAT signaling critically regulates early lineage specification in mouse embryonic stem cells and embryos. Cell Stem Cell 2011;8:46-58
  36. Gomez-Salinero JM, Lopez-Olaneta MM, Ortiz-Sanchez P, Larrasa-Alonso J, Gatto A, Felkin LE, Barton PJR, Navarro- Lerida I, Angel Del Pozo M, Garcia-Pavia P, Sundararaman B, Giovinazo G, Yeo GW, Lara-Pezzi E. The calcineurin variant CnAβ1 controls mouse embryonic stem cell differentiation by directing mTORC2 membrane localization and activation. Cell Chem Biol 2016;23:1372-1382
  37. Mann KM, Ray JL, Moon ES, Sass KM, Benson MR. Calcineurin initiates smooth muscle differentiation in neural crest stem cells. J Cell Biol 2004;165:483-491
  38. Fischer KM, Din S, Gude N, Konstandin MH, Wu W, Quijada P, Sussman MA. Cardiac progenitor cell commitment is inhibited by nuclear Akt expression. Circ Res 2011;108:960-970
  39. Dai DF, Danoviz ME, Wiczer B, Laflamme MA, Tian R. Mitochondrial maturation in human pluripotent stem cell derived cardiomyocytes. Stem Cells Int 2017;2017:5153625
  40. Choi IY, Lim H, Cho HJ, Oh Y, Chou BK, Bai H, Cheng L, Kim YJ, Hyun S, Kim H, Shin JH, Lee G. Transcriptional landscape of myogenesis from human pluripotent stem cells reveals a key role of TWIST1 in maintenance of skeletal muscle progenitors. Elife 2020;9:e46981
  41. Harding MW, Handschumacher RE. Cyclophilin, a primary molecular target for cyclosporine. Structural and functional implications. Transplantation 1988;46(2 Suppl):29S-35S
  42. Nicolli A, Basso E, Petronilli V, Wenger RM, Bernardi P. Interactions of cyclophilin with the mitochondrial inner membrane and regulation of the permeability transition pore, and cyclosporin A-sensitive channel. J Biol Chem 1996;271:2185-2192
  43. Paslaru L, Davidson S, Popescu I, Morange M. The effect of cyclosporine A on cardiomyocytes differentiation. J Cell Mol Med 2007;11:369-371
  44. Montero M, Lobaton CD, Gutierrez-Fernandez S, Moreno A, Alvarez J. Calcineurin-independent inhibition of mitochondrial Ca2+ uptake by cyclosporin A. Br J Pharmacol 2004;141:263-268
  45. Nash A, Samoylova M, Leuthner T, Zhu M, Lin L, Meyer JN, Brennan TV. Effects of immunosuppressive medications on mitochondrial function. J Surg Res 2020;249:50-57
  46. Yilmaz DE, Kirschner K, Demirci H, Himmerkus N, Bachmann S, Mutig K. Immunosuppressive calcineurin inhibitor cyclosporine A induces proapoptotic endoplasmic reticulum stress in renal tubular cells. J Biol Chem 2022;298:101589
  47. Hojo M, Morimoto T, Maluccio M, Asano T, Morimoto K, Lagman M, Shimbo T, Suthanthiran M. Cyclosporine induces cancer progression by a cell-autonomous mechanism. Nature 1999;397:530-534
  48. Bordt EA, Clerc P, Roelofs BA, Saladino AJ, Tretter L, Adam-Vizi V, Cherok E, Khalil A, Yadava N, Ge SX, Francis TC, Kennedy NW, Picton LK, Kumar T, Uppuluri S, Miller AM, Itoh K, Karbowski M, Sesaki H, Hill RB, Polster BM. The putative Drp1 inhibitor mdivi-1 is a reversible mitochondrial complex I inhibitor that modulates reactive oxygen species. Dev Cell 2017;40:583-594.e6