DOI QR코드

DOI QR Code

Enhanced Hybrid Privacy Preserving Data Mining Technique

  • Received : 2023.06.05
  • Published : 2023.06.30

Abstract

Now a days, large volumes of data is accumulating in every field due to increase in capacity of storage devices. These large volumes of data can be applied with data mining for finding useful patterns which can be used for business growth, improving services, improving health conditions etc. Data from different sources can be combined before applying data mining. The data thus gathered can be misused for identity theft, fake credit/debit card transactions, etc. To overcome this, data mining techniques which provide privacy are required. There are several privacy preserving data mining techniques available in literature like randomization, perturbation, anonymization etc. This paper proposes an Enhanced Hybrid Privacy Preserving Data Mining(EHPPDM) technique. The proposed technique provides more privacy of data than existing techniques while providing better classification accuracy. The experimental results show that classification accuracies have increased using EHPPDM technique.

Keywords

References

  1. C. C. Aggarwal and P. S. Yu, "A general survey of privacy-preserving data mining models and algorithms," in Privacy-Preserving Data Mining. New York, NY, USA: Springer, 2008, pp. 11-52.
  2. C. C. Aggarwal, " Data Mining: The Textbook", New York, NY, USA: Springer, 2015.
  3. E. Bertino, D. Lin, and W. Jiang, ''A survey of quantification of privacy preserving data mining algorithms,'' in Privacy-Preserving Data Mining. New York, NY, USA: Springer, 2008, pp. 183-205.
  4. E. Bertino and I. N. Fovino, ''Information driven evaluation of data hiding algorithms,'' in Proc. Int. Conf. Data Warehousing Knowl. Discovery, 2005, pp. 418-427.
  5. S. Fletcher and M. Z. Islam, ''Measuring information quality for privacy preserving data mining,'' Int. J. Comput. Theory Eng., vol. 7, no. 1, pp. 21-28, 2015. https://doi.org/10.7763/IJCTE.2015.V7.924
  6. Pierangela Samarati and Latanya Sweeney, "Protecting Privacy when Disclosing Information: k- anonymity and its Enforcement Through Generalization and Suppression", Proc. of the IEEE Symposium on Research in Security and Privacy, pp. 384-393,1998.
  7. Pierangela Samarati and Latanya Sweeney, "Generalizing data to provide anonymity when disclosing information", in PODS, vol. 98, p. 188, 1998.
  8. Pierangela Samarati, "Protecting respondents identities in microdata release", IEEE Transactions on Knowledge and Data Engineering , Volume: 13, issue 6, Nov/Dec 2001.
  9. Aggarwal, Charu C.; Yu, Philip S. (2008). "A General Survey of Privacy-Preserving Data Mining Models and Algorithms" (PDF). Privacy-Preserving Data Mining - Models and Algorithms. Springer. pp. 11-52. ISBN 978-0-387-70991-8
  10. Li, Ninghui; Li, Tiancheng; Venkatasubramanian, S. (April 2007). t-Closeness: Privacy Beyond k-Anonymity and l-Diversity. IEEE 23rd International Conference on Data Engineering,2007.ICDE2007.pp.106-115.CiteSeerX 10.1.1.158.6171. doi:10.1109/ICDE.2007.367856. ISBN 978-1-4244-0802-3. S2CID 2949246.
  11. Machanavajjhala, Ashwin; Kifer, Daniel; Gehrke, Johannes; Venkitasubramaniam, Muthuramakrishnan (March 2007). "L-diversity: Privacy Beyond K-anonymity". ACM Transactions on Knowledge Discovery from Data. 1 (1):3-es. doi:10.1145/1217299.1217302. ISSN 1556-4681. S2CID 679934
  12. Kundeti Naga Prasanthi, Chandra Sekhara Rao MVP, " A Novel Method of Privacy Preserving Classification Mining Balancing Utility and Accuracy", Journal of Advanced Research in Dynamical & Control Systems, Vol. 11, Issue05, 2019
  13. Keke Chen, Ling Liu, "Geometric data perturbation for privacy preserving outsourced data mining", Knowledge Information and Systems,2010
  14. Bertino E., D. Lin and W. Jiang, " A survey of quantification of privacy preserving data mining algorithms", Privacy-Preserving Data Mining, Springer, ISBN: 978-0-387-70991-8, pp:183-205, 2008.
  15. Langheinrich M., "Privacy in Ubiquitous Computing", Ubiquitous Computing Fundamentals, CRC Press, ISBN:9781420093605, pp:95-159, 2009.
  16. Prasanthi, K.N., Chandra Sekhara Rao, M.V.P., "A Comprehensive Assessment of Privacy Preserving Data Mining Techniques", Lecture Notes in Networks and Systems, 351, pp. 833-842, 2022. https://doi.org/10.1007/978-981-16-7657-4_67