References
- C. C. Aggarwal and P. S. Yu, "A general survey of privacy-preserving data mining models and algorithms," in Privacy-Preserving Data Mining. New York, NY, USA: Springer, 2008, pp. 11-52.
- C. C. Aggarwal, " Data Mining: The Textbook", New York, NY, USA: Springer, 2015.
- E. Bertino, D. Lin, and W. Jiang, ''A survey of quantification of privacy preserving data mining algorithms,'' in Privacy-Preserving Data Mining. New York, NY, USA: Springer, 2008, pp. 183-205.
- E. Bertino and I. N. Fovino, ''Information driven evaluation of data hiding algorithms,'' in Proc. Int. Conf. Data Warehousing Knowl. Discovery, 2005, pp. 418-427.
- S. Fletcher and M. Z. Islam, ''Measuring information quality for privacy preserving data mining,'' Int. J. Comput. Theory Eng., vol. 7, no. 1, pp. 21-28, 2015. https://doi.org/10.7763/IJCTE.2015.V7.924
- Pierangela Samarati and Latanya Sweeney, "Protecting Privacy when Disclosing Information: k- anonymity and its Enforcement Through Generalization and Suppression", Proc. of the IEEE Symposium on Research in Security and Privacy, pp. 384-393,1998.
- Pierangela Samarati and Latanya Sweeney, "Generalizing data to provide anonymity when disclosing information", in PODS, vol. 98, p. 188, 1998.
- Pierangela Samarati, "Protecting respondents identities in microdata release", IEEE Transactions on Knowledge and Data Engineering , Volume: 13, issue 6, Nov/Dec 2001.
- Aggarwal, Charu C.; Yu, Philip S. (2008). "A General Survey of Privacy-Preserving Data Mining Models and Algorithms" (PDF). Privacy-Preserving Data Mining - Models and Algorithms. Springer. pp. 11-52. ISBN 978-0-387-70991-8
- Li, Ninghui; Li, Tiancheng; Venkatasubramanian, S. (April 2007). t-Closeness: Privacy Beyond k-Anonymity and l-Diversity. IEEE 23rd International Conference on Data Engineering,2007.ICDE2007.pp.106-115.CiteSeerX 10.1.1.158.6171. doi:10.1109/ICDE.2007.367856. ISBN 978-1-4244-0802-3. S2CID 2949246.
- Machanavajjhala, Ashwin; Kifer, Daniel; Gehrke, Johannes; Venkitasubramaniam, Muthuramakrishnan (March 2007). "L-diversity: Privacy Beyond K-anonymity". ACM Transactions on Knowledge Discovery from Data. 1 (1):3-es. doi:10.1145/1217299.1217302. ISSN 1556-4681. S2CID 679934
- Kundeti Naga Prasanthi, Chandra Sekhara Rao MVP, " A Novel Method of Privacy Preserving Classification Mining Balancing Utility and Accuracy", Journal of Advanced Research in Dynamical & Control Systems, Vol. 11, Issue05, 2019
- Keke Chen, Ling Liu, "Geometric data perturbation for privacy preserving outsourced data mining", Knowledge Information and Systems,2010
- Bertino E., D. Lin and W. Jiang, " A survey of quantification of privacy preserving data mining algorithms", Privacy-Preserving Data Mining, Springer, ISBN: 978-0-387-70991-8, pp:183-205, 2008.
- Langheinrich M., "Privacy in Ubiquitous Computing", Ubiquitous Computing Fundamentals, CRC Press, ISBN:9781420093605, pp:95-159, 2009.
- Prasanthi, K.N., Chandra Sekhara Rao, M.V.P., "A Comprehensive Assessment of Privacy Preserving Data Mining Techniques", Lecture Notes in Networks and Systems, 351, pp. 833-842, 2022. https://doi.org/10.1007/978-981-16-7657-4_67