
IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.6, June 2023

107

Manuscript received June 5, 2023
Manuscript revised June 20, 2023
https://doi.org/10.22937/IJCSNS.2023.23.6.13

Metric based Performance Measurement of Software Development
Methodologies from Traditional to DevOps Automation Culture

Poonam Narang† and Pooja Mittal††,

poonammdu.rs.dcsa@mdu.ac.in pooja@mdu.ac.in
Maharshi Dayanand University, Rohtak, Haryana, India

Summary
Successful implementations of DevOps practices significantly
improvise software efficiency, collaboration and security. Most
of the organizations are adopting DevOps for faster and quality
software delivery. DevOps brings development and operation
teams together to overcome all kind of communication gaps
responsible for software failures. It relies on different sets of
alternative tools to automate the tasks of continuous integration,
testing, delivery, deployment and monitoring. Although DevOps
is followed for being very reliable and responsible environment
for quality software delivery yet it lacks many quantifiable
aspects to prove it on the top of other traditional and agile
development methods. This research evaluates quantitative
performance of DevOps and traditional/ agile development
methods based on software metrics. This research includes three
sample projects or code repositories to quantify the results and
for DevOps integrated selective tool chain; current research
considers our earlier proposed and implemented DevOps hybrid
model of integrated automation tools. For result discussion and
validation, tabular and graphical comparisons have also been
included to retrieve best performer model. This comparative and
evaluative research will be of much advantage to our young
researchers/ students to get well versed with automotive
environment of DevOps, latest emerging buzzword of
development industries.
Keywords:
Automation, Automation Tools, DevOps, Software Development,
Tool chains

1. Introduction

Software development has covered many
methodologies from traditional and agile to DevOps.
Traditional development methods like waterfall, iterative,
spiral, prototype etc has agonized with many flaws
responsible for late and over budget delivery of software.
Fast and successful delivery was one of the major
challenges for traditional methods. Agile methods came
up with better solutions of speedy releases in terms of
small sprint sizes. Agile approaches introduced. agility in
their methods but still lack continuity in development and
operations where DevOps comes in picture. DevOps relies
on 5Cs of software development. These are Continuous
Integration, Continuous Testing, Continuous Delivery,
Continuous Deployment and Continuous Monitoring. The
continuous environment in DevOps culture is achieved
through different set of alternative tools. With the passage
of time, development industries realized that recent or

latest software delivery approaches or methods to be much
better than traditional ones. DevOps, being the new,
emerging and latest software development culture,
outperforms other traditional and agile methods in every
aspect. Following figure represents working principles of
DevOps –

Figure1. DevOps principles of continuous software

development stages

As depicted in the above figure (1), DevOps works
on the principles of infinite continuous cycle that starts
from continuous integration of code repositories and
continues till the monitoring stage of the software
development. DevOps undoubtedly is the latest buzzword
of development industries but still it lacks in quantitative
quality evaluation. This research quantitatively evaluates
the performance of different software development
methodologies including DevOps based on software
metrics measurement. For the application of these metrics
and to get quantitative results, three sample code
repositories have been taken into consideration. This paper
also considers our already proposed [1] and implemented
[2] DevOps hybrid automation tool chain model. The
result of this performance evaluation validates the quality
of delivered product and also helps to retrieve the best
performer development methodology. The outcome of
current research work will be of useful to our young
researchers/ students to understand course of action of
DevOps and automation tools. It will also be of great help
to software developers to select best performer tools from

Continuous
Integration

Continuous
Delivery

Continuous
Monitoring

Continuous
Deployment

Continuous
Testing

DevOps
Principles of

5 Cs

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.6, June 2023

108

alternative sets of automation tools available.
The remaining sections of the research paper are organized
as – first section introduces the DevOps working
principles followed by literature study section. Next
section defines the metrics that are evaluated to find the
performance of development methodologies along with
their tabular and graphical comparisons. Last section
concludes the work with future or further work.

2. Related Study

SDLC or Software Development Life Cycle

involves different phases or stages in software
development. SDLC contains detailed elaborations for
different steps or procedures necessary to formulate
software. It covers many methodologies like traditional,
agile and currently, DevOps These methodologies cover
various models under them. For example, traditional
methodologies include Incremental, evolutionary,
Waterfall, V Model, spiral etc whereas agile covers Scrum,
Kanban, XP, RAD etc. DevOps, on the hand, involves set
of alternative automation tools to reach goals of being
competitive in the era of digital transformation and
increasing their velocity to adapt or react to change.[3]
DevOps, with its continuity principles, ease the path of
organizations to withstand in this competitive world. Main
focus of current research is the description and comparison
of DevOps with other existing methodologies.

2.1 Traditional Methodologies

Traditional methodologies include specifically
waterfall model introduced first by Winston W. Royce in
1970s. His paper [4] clearly describes stage wise waterfall
model. Through these stages including iterative
approaches, the author introduced the development of
large systems. Step by step approach of traditional
methodologies allows large size projects to handle and
deliver successfully. But on the other side, traditional
development methods are inflexible and also fail to
respond on aggressive or frequently changing requests of
customer. [5] In comparison to traditional, agile
development methodology provides set of practices that
allow quick adaptations of changing customer needs

2.2 Agile Development Methods

Although agile methods come up with coping up
all limitations or flaws of traditional development
methodologies and these are well proven for small,
collocated teams but authors in their research [5] confirms

that agile methods also work for large sized and distributed
projects. Another similar research on agile methods [6]
also proved agile methods for inspiring in large and very
large-scale development. So, agile methods favor more
communication, continuous integration along with rapid
product delivery through iterative and incremental
approach, but at the same time agile methods suffer from
many limitations of planning lacks, documentation lacks
along with lack of predictability etc. [7] Authors
conducted online survey to find actual limitations of agile
methods beyond the existing literature survey. DevOps,
here, comes up with one of the proposed solution to many
development and delivery pressure including quality of
developed product. [8]

2.3 DevOps and its Existing Models

Alok Mishra and Ziadoon Otaiwi [8] in their work
on DevOps, analyzes implications of DevOps features on
software quality. Primary focus of DevOps is to increase
deployment speed, frequency and product quality. DevOps,
Development and Operations, bridges all kinds of
communication gaps between dev and ops teams with the
targets of reducing discrepancies of these teams. [9] In
another research on case study of five companies, authors
[10] agree upon well coordination between development
and operations teams to deliver or deploy quality products.
Although multiples of research agrees to adopt DevOps,
yet at the same time, many theories are against DevOps
and talk about lack of quantification of quality and
performance measure [11]. Another research on case study
on DevOps agreed DevOps help companies in reaching
their goals and also increased their velocity in react to
change [13].

Literature also confirms the existence and

successful implementation of different DevOps Models in
practice. [12] Similarly, many other papers including [13]
[14], accepts the emerging paradigm as a response to
growing knowledge of existing many types of
communicational or collaboration, cultural gaps between
dev and ops teams functions.

2.4 Motivation

Our motivation behind this research is to address
the challenge of quantification of DevOps quality and
timeliness of delivered product. For this purpose, current
research also considers our already proposed [1] and
implemented [2] hybrid automation tools model. On the
basis of existing literature and our tools model, this work
performs evaluation of different types of parameters for
quality measurement. This research has taken three sample
software applications based or developed in JDK

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.6, June 2023

109

environment for measuring DevOps performance and
quality.

3. Hybrid Model for DevOps

For the quality validation of DevOps tools, we
have considered our previously proposed [1] and
implemented hybrid model [2] for DevOps for integrated
tool chain (ITC) as depicted in the following figure –

Figure 2. Hybrid model for DevOps automation toolset [1]

As shown in above figure (2) for hybrid model,
different tools are proposed or selected as best performer
tool based on performance evaluators. Current research
work considers same set of automation tools for DevOps
implementation.

4. Research Design

For this underlying research, we have considered
three sample java based applications - Web Site for Online
Faculty Recruitment, Car searching, scientific calculator
tool. These applications or code is designed in local
repositories in JDK environment and uploaded in GitHub
to make it remote repository and for the smooth working
of DevOps environment. After writing and uploading of
code, next is to plan and write test cases for proper
execution and implementation of the code. If the test case
fails then we are to rewrite the test case after code
refactoring. Successful test case execution is then followed
by code deploy and monitoring or operations phase of the
project. The complete step by step procedure in terms of
process flow diagram for current research work is shown
below –

 Figure 3. Process flow diagram of current research work

As clearly depicted in above flowchart or diagram
(3), writing test cases and successful code testing is the
major part of the DevOps process. For the implementation
purpose, Jenkins continuous integration tool is selected
which also takes charge of continuous delivery of the
product. Different Plugins are also installed with Jenkins
for the smooth working the tool. Code repository or
maintenance is done through GitHub. Ansible with Jenkins
is responsible for continuous deployment of the code. Test
cases are written using Junit. Build work is done by
Maven. All these steps or procedure is fully automated and
done through DevOps automation tool set.

5. Quality Evaluation of DevOps and other
Development Methodologies through Metric

Measurement

Quality plays important role in software acceptance.
Software quality is not a single factor or value but it covers
many different parameters like testability, predictability,
maintainability etc to consider for achieving the complete
quality product. So quantification of these performance or
efficiency parameters becomes more important for

Write the Code

Code
Deployment

Plan and write
Test Case

 Integration and
system Testing

Code Execution &
Implementation

 Build and
unit test

Execute
the test

Monitoring or
Operations

Test Succeeds

Test
Fails

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.6, June 2023

110

measuring the quality value. This research work considers
all three types of software metrics – Project, Process and
Product metrics. Project metrics covered in current work
are Project Defect Density and Release Deployment
Frequency, to measure defect density covered in project
along with the deployment frequency of the project in
terms of releases. Similarly, Process metrics covered
productivity of the whole process in the form of
throughput of the system. Lastly, product, metrics involves
identification of risk involved and reliability of the
developed product. These software metrics along with
their expected outcome is shown in following table –

TABLE1. SOFTWARE METRIC CLASSIFICATIONS FOR VALIDATION OF THE

SOFTWARE DEVELOPED
Type of
software
metric

Software Metric
Expected Outcome

or Results

Project Project Defect Density Low
Release Deployment Frequency High

Process Risk Identification High
Product Process Productivity High

Above categorization of Software metrics in table (1),
clearly mentions expected results of the metric. These
metrics with their calculation formulas and methods are
explained below –

5.1 Project Defect Density (PDD)

Project defect density refers to the deploy readiness
of the software that is whether software can be deployed or
not. PDD in actual depends directly on presence of defects
in the system. As defects can incur at any stage of software
development, so checks at regular intervals become
necessary activity of development. The value of PDD must
be low to ensure quality delivery of the software. Defect
density formula is given as –

PDD = 


n

i inKLOCwareSizeofSoft

rofDefectsTotalNumbe

1)(
 (1)

Above formula (1) is used to first find defect

density of individual components or modules of the system
and to get the defect density for the whole system/project
by summing them up. Here, n refers to total number of
components or modules in the system and n>0.

5.2 Release Deployment Frequency (RDF)

Release deployment frequency tells total number of
deployments in a particular time period. In other words,
RDF refers to the rate of release deployment. Higher the
value of RDF, lesser is the chance of errors/ defects in the

system. Formula for calculating deployment frequency is
given as –

RDF = 


n

i inHoursTimeUnit

entsrofDeploymTotalNumbe

1)(
 (2)

Formula (2) above, calculates total number of deployments
or release count in particular time unit, taken in hours, for
individual components and adding them all to get the RDF
for the whole system/project.

5.3 System Risk Identification (SRI)

System risk identification refers to the assessment
of risk associated with the project/ system to be developed.
High value of risk factor reflects identification of more
risk components and ensures safe and risk free delivery of
software. Expression or formula for system risk
identification is given as –

SRI=


n

i

Wx
1

 , n>0 (3)

In above expression (3), Wx refers to the weightage
assigned to each individual risk and summing up all to get
system risk identification number. Here, n refers to total
number of components in the system.

5.4 Process Productivity (PP)

Productivity of any system is total units of work
done in particular time period. It refers to the throughput
of the system. Process or system productivity is measures
as –

PP = 


n

i oCompleteTimeTakenT

riesrofUserStoTotalNumbe

1

 (4)

Above formula (4) to find the productivity of the process
or system, computes summation of productivity of
individual components. User stories, here, refers to the unit
of work done in given time period.

6. Data Set

Current research compares traditional and agile
methodologies with DevOps development. For this
purpose, three sample applications /projects in java have
been designed through traditional methods and later on
uploaded these local repositories to GitHub for

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.6, June 2023

111

implementation of DevOps tools. Different parameters for
measurement of applications are calculated as –

Figure 4.Components/Modules and LOC count for sample applications

Above Figure (4), gives total count of lines of code
along with different components and other parameters to
consider for metric evaluation purpose. Following table
shows descriptive measures of these sample applications –

TABLE2. SAMPLE SOFTWARE APPLICATIONS AS DATA SET FOR CURRENT

RESEARCH WORK
Src
No

Name of Project/
Application

Size
(LOC)

No of
Components/

Modules

Application
Domain

1 Web Site for Online
Faculty recruitment

(Project1)

2430 18
Web based

2 Car search
Application (Project2)

1579 14 Search
application

3 Scientific calculator
tool (Project3)

557 8
Tool

Different sample applications mentioned in table (2) have
Java as application development environment.

7. Results and Discussion

Software metric evaluation is an essential
requirement for the measurement of project progress,
successful delivery, deployment and operations of the
whole process, project and product. Different metrics

defined above are evaluated for the data set of table (2)
and results are also discussed below.

 7.1 Project Defect Density (PDD)

Defect Density is an important project metric to
measure different defects included in the system in the
form of bugs. Table 3 below shows the defect density
measure of the whole project or system as calculated with
traditional methods of development –

 TABLE3. PDD MEASURE OF SAMPLE APPLICATIONS AS PER

TRADITIONAL DEVELOPMENT APPROACHES
Sr
No Project

Size
(LOC)

No of
Components/

Modules

Total no
of

Defects

Defect
Density
(PDD)

1 Project1 2430 18 30 12.35
2 Project2 1579 14 18 11.40
3 Project3 557 8 10 17.95

Defect density is computed in above table (3) using
traditional development approaches and by dividing total
number of defects with size of the corresponding project as
given be expression (1). Table 4 below computes defect
density with DevOps development –

TABLE 4. PDD MEASURE OF SAMPLE APPLICATIONS AS PER DEVOPS

DEVELOPMENT CULTURE
Sr
No Project

Size
(LOC)

No of
Components/

Modules

Total no
of

Defects

Defect
Density
(PDD)

1 Project1 2430 18 15 6.17
2 Project2 1579 14 8 5.07
3 Project3 557 8 4 7.18

As seen in table (4) above, DevOps culture of
development has low value for defect density that clearly
indicates more reliability and success of the underlying
process or project. Following figure displays graphical
comparison of these methods –

Figure 5. Graphical comparison of traditional and DevOps development
culture for defect density measure

Above figure (5) indicates low value of defect
density for DevOps development culture as compared to

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.6, June 2023

112

traditional methods. DevOps ensures reliable, defect free
and successful delivery of software.

7.2 Release Deployment Frequency (RDF)

Deployment frequency data of applications or java
projects with the usage of traditional principles and rules
is shown in table below –

 TABLE 5. RDF MEASURE OF SAMPLE PROJECTS USING TRADITIONAL

METHODS OF DEVELOPMENT
Sr
No

Project
Size

(LOC)

No of
deployments

Time
taken to
deploy

(hr)

Deployment
Frequency

(RDF)

1 Project1 2430 18 1.8 10
2 Project2 1579 15 1.5 10
3 Project3 557 9 1 9

Table (5) above contains the data related to deployment
frequency in traditional methods and table below shows
for DevOps development –

TABLE 6. RDF MEASURE OF SAMPLE PROJECTS USING DEVOPS

DEVELOPMENT
Sr
No

Project
Size

(LOC)

No of
deployments

Time
taken to
deploy

(hr)

Deployment
Frequency

(RDF)

1 Project1 2430 20 1.1 18.18
2 Project2 1579 16 0.9 17.78
3 Project3 557 10 0.7 14.29

Above table (6) clearly indicates the high value of
deployments that leads to acceptance to frequent changes
to the system. Following figure also shows comparative
graph of these two development methodologies –

Figure 6. Comparative study graph for DevOps and Traditional
approaches

As depicted in above graphical comparison figure (6),
DevOps has higher number of deployments as compared
to earlier approaches.

7.3 Risk Identification (RI)

Risk coverage analysis or risk identification gives the total
number of risk sets injected with risk sets executed

positively and total risks not tested or broken. Following
table shows risk identification measurement as in the
earlier development approaches –

TABLE 7. RI ESTIMATE OF SAMPLE APPLICATIONS USING TRADITIONAL

METHODS OF DEVELOPMENT

Table (7) above depicts different risks set coverage as per
earlier development approaches and table below contains
data concerning with risk sets included and covered –

TABLE 8. RI ESTIMATE OF SAMPLE APPLICATIONS USING DEVOPS

CULTURE

Above table (8), estimates or measures total number of
risks covered by the underlying development approach.
Graph beneath shows comparative study of risk sets
coverage by both development approaches –

Figure 7. Risk coverage comparative study graph for DevOps and
Traditional approaches

Above graph in figure (7) again clearly indicates more risk
coverage by DevOps as compared with earlier
development approaches.

7.4 Process Productivity (PP)

Process productivity also measured as throughput
of whole system or software. It measures total units of
work done in particular time period. PP for traditional
methods are shown in the following table –

Sr
No

Project
Total
Risk
Tests

Total no
of risk
tests

executed

Risks
broken

Total
Risks
not

tested

Risks
not

executed

Risk
Coverage
(%age)

1 Project1 275 188 42 22 23 68.36
2 Project2 150 104 23 12 11 37.81
3 Project3 60 40 9 5 6 14.55

Sr
No

Project
Total
Risk
Tests

Total no
of risk
tests

executed

Risks
broken

Total
Risks
not

tested

Risks
not

executed

Risk
Coverage
(%age)

1 Project1 275 211 23 24 17 76.73
2 Project2 150 116 12 13 9 42.18
3 Project3 60 46 5 5 4 16.62

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.6, June 2023

113

TABLE 9. PP ESTIMATE/ MEASURE OF CURRENT DATA SET USING

TRADITIONAL METHODS
Sr
No Project

Size
(LOC)

Total No of
user stories

Time
taken (in
weeks)

Process
Productivity

(PP)
1 Project1 2430 180 18 10
2 Project2 1579 117 12 9.75
3 Project3 557 41 4 10.25

Table (9) above gives productivity measure in terms of
throughput expression (4), it shows data for the traditional
approaches. Similarly, following table includes the data for
DevOps development culture –

Table10. PP Estimate/ Measure of current data set using DevOps

methods
Sr
No Project

Size
(LOC)

Total No of
user stories

Time
taken (in
weeks)

Process
Productivity

(PP)
1 Project1 2430 180 14 12.86
2 Project2 1579 117 9 13
3 Project3 557 41 3 13.67

Above table (10) clearly indicates more throughput or
productivity measure for DevOps culture. Following
comparative graph gives more evidence for these tables –

Figure 8. Graphical Comparison for Productivity measure of Traditional
and DevOps Development approaches

In the above figure (8), DevOps shows speedy releases or
output in terms of productivity measure in comparison
with traditional approaches.

DevOps development culture gives better results as
depicted in above tabular and graphical comparisons. Each
of the performance metric and graphic visualization shows
DevOps as symbol of quality and speedy delivery with
less defect density and high coverage of risk sets.

8. Conclusions and Future Work

Main focus of current research work is the quality
validation of DevOps development culture over traditional
approaches including agile methods. To confirm the
validity of DevOps quality, three java applications from
different domain are considered along with DevOps
performance metrics. Software components with different

parameters are observed for these applications and values
were calculated for considered metrics. Results, shown
using tabular and graphical methods, confirm the quality
validation of DevOps over other existing development
approaches. As a part of future work, real time industry
data can also be taken or our own tool can be designed to
get more automated results.

REFERENCES
[1] Poonam Narang, Pooja Mittal, Hybrid Model for Software

Development: an Integrated Comparison of DevOps Automation
Tools, Indonesian Journal of Electrical Engineering and Computer
Science (IJEECE), IAES Publishers, ISSN 2502-4752, Scopus
indexed, SJR 2020 (Q3 0.241, (accepted for publication).

[2] Pooja Mittal, Poonam Narang, Implementation of DevOps Hybrid
Model for Project Management and Deployment using Jenkins with
Plugins, Journal of Information and Communication Technology
(JICT), Scopus, ESCI, (Paper communicated).

[3] Marta Gomes, Ruben Pereira, Miguel Silva, Jose Braga de
Vasconcelos, Alvaro Rocha, KPIs for Evaluation of DevOps Teams,
World CIST2022, Information systems and Technology, pp 142-
156, LNNS, Vol 470.

[4] Dr. Winston W. Royce at https://en.wikipedia.org/wiki/, Retrieved
May 20, 2022,

[5] Georgios Papadopoulos, Moving from Traditional to Agile Software
Development Methodologies Also on Large, Distributed Projects,
Elsevier Procedia – Social and Behavioral Sciences, Vol 175, Feb
2015, pp 455-463

[6] Torgeir Dingsoyr, Nils Brede Moe, Tor Erlend Faegri and Eva
Amdahl Seim, Exploring Software Development at the very large-
scale: a revelatory case study and research agenda for agile
method adaptation, SpringerLink Empirical Software Engineering
23, 490- 520 (2018).

[7] Ashish Agrawal, Mohd, Auranzeb Atiq, L.S. Maurya, A Current
Study on the Limitation of Agile Methods in Industry Using Secure
Google Forms, Elsevier Procedia Computer Science, Vol 78,2016,
Pages 291-297

[8] Alok Mishra, Ziadoon Otaiwi, DevOps and software quality: a
systematic mapping Elsevier Computer Science Review, Vol 38,
Nov 2020, 100308.

[9] Debois P., (2008), Agile infrastructure and operations: how infra-
gile is you? Agile 2008 Conference, IEEE, Toronto, ON,Canada,
ISBN: 978-0-7695-3321-6

[10] Khan AA, Shameem M. Multicriteria decision-making taxonomy
for DevOps challenging factors using analytical hierarchy process. J
Softw-Evol Proc. 2020; 32(10):11-13, e2263.

[11] Leite L, Rocha C, Kon F, Milojicic D, Meirelles P. (2019), A survey
of DevOps concepts and challenge, ACM Computing Surveys
(CSUR). 2019; 52(6):1-35

[12] Trihinas D, Tryfonos A, Dikaiakos MD, Pallis G (2018). DevOps as
a service: pushing the boundaries of microservice adoption. IEEE
Internet Comput;22(3):65-71

[13] Silva, M.A., Faustino, J.P., Pereira, R., da Silva, M.M.: Productivity
gains of DevOps adoption in an IT team: a case study (2018)

[14] Stoneham, J., Thrasher, P., Potts, T., Mickman, H., DeArdo, C.,
Limonchelli, and T.A.: DevOps Case Studies: The Journey to
Positive Business Outcomes. IT Revolution Press. Portland

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.6, June 2023

114

Poonam, Research Scholar,
pursuing PhD from the Department
of Computer Science and
Applications, Maharishi Dayanand
University, Rohtak, Haryana under
the supervision of Respected Dr.
Pooja Mittal (Research Guide and
Second Author). Author’s
Qualification is M.Phil. (CS), MCA.
She had attended many National
and International Conferences

including Springer and IEEE and also published many research
papers. She can be contacted at email:
poonam.mehta20@gmail.com, Orcid ID - 0000-0001-7949-
344X

Dr. Pooja Mittal obtained her
Ph.D. degree from Maharshi
Dayanand University. Her area of
research and specialization include
Data Mining, Data Warehousing, and
Computer Science. She had
published more than 50 research
papers in renowned International and
National Journals and attended more
than 30 Conferences. Currently she is
working as Assistant Professor in the

Department of Computer Science & Applications, Maharishi
Dayanand University, Rohtak (Haryana). She can be contacted at
email: mpoojamdu@gmail.com, Orcid ID – 0000-0001-9746-
6621

