DOI QR코드

DOI QR Code

The Maximum Scatter Travelling Salesman Problem: A Hybrid Genetic Algorithm

  • Zakir Hussain Ahmed (Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU)) ;
  • Asaad Shakir Hameed (Department of Mathematics, General Directorate of Thi-Qar Education, Ministry of education) ;
  • Modhi Lafta Mutar (Department of Mathematics, General Directorate of Thi-Qar Education, Ministry of education) ;
  • Mohammed F. Alrifaie (Department of Information and Communications, Basra University College of science and technology) ;
  • Mundher Mohammed Taresh (College of Information Science and Engineering, Hunan University)
  • 투고 : 2023.06.05
  • 발행 : 2023.06.30

초록

In this paper, we consider the maximum scatter traveling salesman problem (MSTSP), a travelling salesman problem (TSP) variant. The problem aims to maximize the minimum length edge in a salesman's tour that travels each city only once in a network. It is a very complicated NP-hard problem, and hence, exact solutions can be found for small sized problems only. For large-sized problems, heuristic algorithms must be applied, and genetic algorithms (GAs) are found to be very successfully to deal with such problems. So, this paper develops a hybrid GA (HGA) for solving the problem. Our proposed HGA uses sequential sampling algorithm along with 2-opt search for initial population generation, sequential constructive crossover, adaptive mutation, randomly selected one of three local search approaches, and the partially mapped crossover along with swap mutation for perturbation procedure to find better quality solution to the MSTSP. Finally, the suggested HGA is compared with a state-of-art algorithm by solving some TSPLIB symmetric instances of many sizes. Our computational experience reveals that the suggested HGA is better. Further, we provide solutions to some asymmetric TSPLIB instances of many sizes.

키워드

과제정보

This research was supported by Deanery of Academic Research, Imam Muhammad Ibn Saud Islamic University, Saudi Arabia vide Grant No. 18-11-09-010. The first author thanks the Deanery for its financial support.

참고문헌

  1. E.M. Arkin, Y.-J. Chiang, J.S.B. Mitchell, S.S. Skiena, and T.-C. Yang, On the maximum scatter traveling salesperson problem, SIAM Journal of Computing 29 (1999) 515-544. https://doi.org/10.1137/S0097539797320281
  2. Z.H. Ahmed, A hybrid genetic algorithm for the bottleneck traveling salesman problem. ACM Transactions on Embedded Computing Systems 12 (2013) Art. No. 9.
  3. A. Barvinok, S.P. Fekete, D.S. Johnson, A. Tamir, G.J. Woeginger and R. Woodroofe, The geometric maximum traveling salesman problem, Journal of the ACM 50(5) (2003) 641-664. https://doi.org/10.1145/876638.876640
  4. J. LaRusic and A.P. Punnen, the asymmetric bottleneck traveling salesman problem: Algorithms, complexity and empirical analysis, Computers & Operations Research 43 (2014) 20-35. https://doi.org/10.1016/j.cor.2013.08.005
  5. F. Scholz, Coordination hole tolerance stacking, Technical Report BCSTECH-93-048, Boeing Computer Services, November 1993.
  6. L.R. John, the bottleneck traveling salesman problem and some variants, Master of Science of Simon Fraser University, Canada, 2010.
  7. W.B. Carlton and J.W. Barnes, Solving the travelling salesman problem with time windows using tabu search, IEE Transaction 28 (1996) 617-629. https://doi.org/10.1080/15458830.1996.11770707
  8. J.W. Ohlmann and B.W. Thomas, A compressed-annealing heuristic for the traveling salesman problem with time windows, INFORMS Journal of Computing 19 (1) (2007) 80-90. https://doi.org/10.1287/ijoc.1050.0145
  9. C.-B. Cheng and C.-P. Mao, A modified ant colony system for solving the travelling salesman problem with time windows, Mathematical Computer Modelling 46 (2007) 1225-1235. https://doi.org/10.1016/j.mcm.2006.11.035
  10. M. Gendreau, A. Hertz, G. Laporte and M. Stan, A generalized insertion heuristic for the traveling salesman problem with time windows, Operations Research 46 (3) (1998) 330-335. https://doi.org/10.1287/opre.46.3.330
  11. R.F. da Silva and S. Urrutia, A general VNS heuristic for the traveling salesman problem with time windows, Discrete Optimization 7 (4) (2010) 203-211. https://doi.org/10.1016/j.disopt.2010.04.002
  12. DE. Goldberg. Genetic algorithms in search, optimization, and machine learning, Addison-Wesley, New York, 1989.
  13. Z.H. Ahmed, Genetic algorithm for the traveling salesman problem using sequential constructive crossover operator, International Journal of Biometrics & Bioinformatics 3 (2010) 96-105.
  14. I. Hoffmann, S. Kurz, and J. Rambau, The maximum scatter TSP on a regular grid, in Operations Research Proceedings 2015, Springer, 2017, pp. 63-70.
  15. Z.H. Ahmed, A comparative study of eight crossover operators for the maximum scatter travelling salesman problem, International Journal of Advanced Computer Science and Applications (IJACSA) 11 (2020) 317-329.
  16. P. Venkatesh, A. Singh and R. Mallipeddi, A multi-start iterated local search algorithm for the maximum scatter traveling salesman problem, 2019 IEEE Congress on Evolutionary Computation (CEC), Wellington, New Zealand, 2019, pp. 1390-1397.
  17. A.S. Hameed, B.M. Aboobaider, N.H. Choon, M.L Mutar, W.H. Bilal. 'Review on the Methods to Solve Combinatorial Optimization Problems Particularly: Quadratic Assignment Model', International Journal of Engineering & Technology, 7, pp. 15-20. 2018. https://doi.org/10.14419/ijet.v7i3.20.18722
  18. M.L. Mutar, M.A. Burhanuddin, A.S. Hameed, N. Yusof, H.J. Mutashar. 'An efficient improvement of ant colony system algorithm for handling capacity vehicle routing problem', International Journal of Industrial Engineering Computations, 11(4), pp. 549-564. 2020. DOI: 10.5267/j.ijiec.2020.4.006.
  19. Yi-J. Chiang. New approximation results for the maximum scatter TSP. Algorithmica, 41 (2005) 309-341. https://doi.org/10.1007/s00453-004-1124-z
  20. S.N. Kabadi and A.P. Punnen. The bottleneck TSP, In the Traveling Salesman Problem and Its Variations, G. Gutin and A.P. Punnen (eds.), Chapter 15, Kluwer Academic, Dordrecht, 2002.
  21. W. Dong, X. Dong and Y. Wang, The improved genetic algorithms for multiple maximum scatter traveling salesperson problems, In J. Li et al. (Eds.): CWSN 2017, CCIS 812, pp. 155-164, 2018.
  22. Z.H. Ahmed, A lexisearch algorithm for the bottleneck travelling salesman problem, International Journal of Computer Science and Security 3(5) (2010) 569-577.
  23. Z.H. Ahmed, A data-guided lexisearch algorithm for the bottleneck travelling salesman problem, International Journal of Operational Research 12(1) (2011) 20-33. https://doi.org/10.1504/IJOR.2011.041857
  24. Z.H. Ahmed, A hybrid sequential constructive sampling algorithm for the bottleneck traveling salesman problem, International Journal of Computational Intelligence Research 6(3) (2010) 475-484.
  25. Z.H. Ahmed, A hybrid genetic algorithm for the bottleneck traveling salesman problem, ACM Transactions on Embedded Computing Systems (TECS)12(1) (2013) 1-10. https://doi.org/10.1145/2406336.2406345
  26. Z.H. Ahmed, An experimental study of a hybrid genetic algorithm for the maximum traveling salesman problem, Mathematical Sciences 7(1) (2013) 1-7. https://doi.org/10.1186/2251-7456-7-1
  27. K. Deb, Optimization for engineering design: algorithms and examples, Prentice Hall of India Pvt. Ltd., New Delhi, India, 1995.
  28. L. Davis, Job-shop scheduling with genetic algorithms, Proceedings of an International Conference on Genetic Algorithms and Their Applications, 136-140, 1985.
  29. D.E. Goldberg and R. Lingle, Alleles, loci and the travelling salesman problem, In J.J. Grefenstette (ed.) Proceedings of the 1st International Conference on Genetic Algorithms and Their Applications. Lawrence Erlbaum Associates, Hilladale, NJ, 1985.
  30. I.M. Oliver, D. J. Smith and J.R.C. Holland, A Study of permutation crossover operators on the travelling salesman problem, In J.J. Grefenstette (ed.). Genetic Algorithms and Their Applications: Proceedings of the 2nd International Conference on Genetic Algorithms. Lawrence Erlbaum Associates, Hilladale, NJ, 1987.
  31. J. Grefenstette, R. Gopal, B. Rosmaita and D. Gucht, Genetic algorithms for the traveling salesman problem, In Proceedings of the First International Conference on Genetic Algorithms and Their Applications, (J. J. Grefenstette, Ed.), Lawrence Erlbaum Associates, Mahwah NJ, 160-168, 1985.
  32. N.J. Radcliffe and P.D. Surry, Formae and variance of fitness, In D. Whitley and M. Vose (Eds.) Foundations of Genetic Algorithms 3, Morgan Kaufmann, San Mateo, CA, 51-72, 1995.
  33. D. Whitley, T. Starkweather and D. Shaner, the traveling salesman and sequence scheduling: quality solutions using genetic edge recombination, In L. Davis (Ed.) Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York, 350-372, 1991.
  34. Z.H. Ahmed, an improved genetic algorithm using adaptive mutation operator for the quadratic assignment problem, 38th International Conference on Telecommunications and Signal Processing 2015 (TSP 2015) (2015) 1-5.
  35. G. Reinelt, TSPLIB, http://comopt.ifi.uniheidelberg.de/software/TSPLIB95/