Acknowledgement
본 연구는 한국연구재단 기초연구실 사업(2020R1A4A4079954)과 지자체-대학협력기반 지역혁신 사업(울산·경남지역혁신플랫폼 저탄소그린에너지, 2021RIS-003)의 지원을 받아 이루어졌습니다.
References
- Meloni, E., Martino, M. and Palma, V., "A Short Review on Ni Based Catalysts and Related Engineering Issues for Methane Steam Reforming," Catalysts, 10(3), 352-390(2020). https://doi.org/10.3390/catal10030352
- Yoo, J., Park, S., Song, J. H., Yoo, S. and Song, I. K., "Hydrogen Production by Steam Reforming of Natural Gas Over Butyric Acid-assisted Nickel/alumina Catalyst," International Journal of Hydrogen Energy, 42(47), 28377-28385(2017). https://doi.org/10.1016/j.ijhydene.2017.09.148
- Iglesias, I., Baronetti, G. and Marino, F., "Ni/Ce0.95M0.05O2-d (M = Zr, Pr, La) for Methane Steam Reforming at Mild Conditions," International Journal of Hydrogen Energy, 42(50), 29735-29744(2017). https://doi.org/10.1016/j.ijhydene.2017.09.176
- Li, D., Zeng, L., Li, X., Wang, X., Ma, H., Assabumrungrat, S. and Gong, J., "Ceria-promoted Ni/SBA-15 Catalysts for Ethanol Steam Reforming with Enhanced Activity and resistance to deactivation," Applied Catalysis B: Environmental, 176-177, 532-541(2015). https://doi.org/10.1016/j.apcatb.2015.04.020
- Ogo, S. and Sekine, Y., "Recent Progress in Ethanol Steam Reforming Using Non-noble Transition Metal Catalysts: A Review," Fuel Processing Technology, 199, 106238-106249(2020). https://doi.org/10.1016/j.fuproc.2019.106238
- Lertwittayanon, K., Youravong, W. and Lau, W. J., "Enhanced Catalytic Performance of Ni/α-Al2O3 Catalyst Modified with CaZrO3 Nanoparticles in Steam-methane Reforming," International Journal of Hydrogen Energy, 42(47), 28254-28265(2017). https://doi.org/10.1016/j.ijhydene.2017.09.030
- Wang, W., Wang, H., Yang, Y. and Jiang, S., "Ni-SiO2 and Ni-Fe-SiO2 Catalysts for Methane Decomposition to Prepare Hydrogen and Carbon Filaments," International Journal of Hydrogen Energy, 37(11), 9058-9066(2012). https://doi.org/10.1016/j.ijhydene.2012.03.003
- Lertwittayanon, K., Atong, D., Aungkavattana, P., Wasanapiarnpong, T., Wada, S. and Sricharoenchaikul, V., "Effect of CaO-ZrO2 Addition to Ni Supported on γ-Al2O3 by Sequential Impregnation in Steam Methane Reforming," International Journal of Hydrogen Energy, 35(22), 12277-12285(2010). https://doi.org/10.1016/j.ijhydene.2010.08.098
- Roh, H., Eum, I. and Jeong, D., "Low Temperature Steam Reforming of Methane over Ni-Ce(1-x)Zr(x)O2 Catalysts Under Severe Conditions," Renewable Energy, 42, 212-216(2012). https://doi.org/10.1016/j.renene.2011.08.013
- Iglesias, I., Baronetti, G., Alemany, L. and Marino, F., "Insight into Ni/Ce1-xZrxO2-δ Support Interplay for Enhanced Methane Steam Reforming," International Journal of Hydrogen Energy, 44(7), 3668-3680(2019). https://doi.org/10.1016/j.ijhydene.2018.12.112
- Kusakabe, K., Sotowa, K., Eda, T. amd Iwamoto, Y., "Methane Steam Reforming over Ce-ZrO2-supported Noble Metal Catalysts at Low Temperature," Fuel Processing Technology, 86(3), 319-326(2004). https://doi.org/10.1016/j.fuproc.2004.05.003
- Pompeo, F., Gazzoli, D. and Nichio, N. N., "Stability Improvements of Ni/α-Al2O3 Catalysts to Obtain Hydrogen from Methane Reforming," International Journal of Hydrogen Energy, 34(5), 2260-2268(2009). https://doi.org/10.1016/j.ijhydene.2008.12.057
- Escritori, J. C., Dantas, S. C., Soares, R. R. and Hori, C. E., "Methane Autothermal Reforming on Nickel-ceria-zirconia Based Catalysts," Catalysis Communications, 10(7), 1090-1094(2009). https://doi.org/10.1016/j.catcom.2009.01.001
- Zheng, Y., Li, K., Wang, H., Zhu, X., Wei, Y., Zheng, M. and Wang, Y., "Enhanced Activity of CeO2-ZrO2 Solid Solutions for Chemical-Looping Reforming of Methane via Tuning the Macroporous Structure," Energy & Fuels, 30(1), 638-647(2015). https://doi.org/10.1021/acs.energyfuels.5b02151
- Do, L. T., Nguyen-Huy, C. and Shin, E. W., "NiK/yCexZr1-xO2-macroporous Al2O3 Catalysts for Cracking of Vacuum Residual oil with Steam," Applied Catalysis A: General, 525, 23-30(2016). https://doi.org/10.1016/j.apcata.2016.07.005
- Halabi, M., Croon, M. D., Schaaf, J. V., Cobden, P. and Schouten, J., "Low Temperature Catalytic Methane Steam Reforming over Ceria-zirconia Supported Rhodium," Applied Catalysis A: General, 389(1-2), 68-79(2010). https://doi.org/10.1016/j.apcata.2010.09.004
- Salcedo, A., Lustemberg, P. G., Rui, N., Palomino, R. M., Liu, Z., Nemsak, S., Senanayake, S. D., Rodriguez, J. A., Ganduglia-Pirovano, M. and Irigoyen, B., "Reaction Pathway for Coke-Free Methane Steam Reforming on a Ni/CeO2 Catalyst: Active Sites and the Role of Metal-Support Interactions," ACS Catalysis, 11(13), 8327-8337(2021). https://doi.org/10.1021/acscatal.1c01604
- Ochoa, A., Bilbao, J., Gayubo, A. G. and Castano, P., "Coke Formation and Deactivation During Catalytic Reforming of Biomass and Waste Pyrolysis Products: A Review," Renewable and Sustainable Energy Reviews, 119, 109600-109629(2020). https://doi.org/10.1016/j.rser.2019.109600
- Ashok, J., Wai, M. H. and Kawi, S., "Nickel-based Catalysts for High-temperature Water Gas Shift Reaction-Methane Suppression," ChemCatChem, 10(18), 3927-3942(2018). https://doi.org/10.1002/cctc.201800031
- Chen, L., Qi, Z., Zhang, S., Su, J. and Somorjai, G. A., "Catalytic Hydrogen Production from Methane: A Review on Recent Progress and Prospect," Catalysts, 10(8), 858-876(2020). https://doi.org/10.3390/catal10080858
- Toledo, R. R., Sanchez, M. B., Porras, G. R., Ramirez, R. F., Larios, A. P., Ramirez A. M. and Rosales, M. M., "Effect of Mg as Impurity on the Structure of Mesoporous γ-Al2O3: Efficiency as Catalytic Support in HDS of DBT," International Journal of Chemical Reactor Engineering, 1-16(2018).
- Pu, J., Luo, Y., Wang, N., Bao, H., Wang, X. and Qian, E. W., "Ceria-promoted Ni@Al2O3 Core-shell Catalyst for Steam Reforming of Acetic Acid with Enhanced Activity and Coke Resistance," International Journal of Hydrogen Energy, 43(6), 3142-3153(2018). https://doi.org/10.1016/j.ijhydene.2017.12.136
- Wang, J., Li, Z., Zhang, S., Yan, S., Cao, B., Wang, Z. and Fu, Y., "Enhanced NH3 Gas-sensing Performance of Silica Modified CeO2 Nanostructure Based Sensors," Sensors and Actuators B: Chemical, 255, 862-870(2018). https://doi.org/10.1016/j.snb.2017.08.149
- Zhao, X., Xue, Y., Yan, C., Huang, Y., Lu, Z., Wang, Z., Zhang, L. and Guo, C., "Promoted Activity of Porous Silica Coated Ni/CeO2ZrO2 Catalyst for Steam Reforming of Acetic Acid," International Journal of Hydrogen Energy, 42(34), 21677-21685(2017). https://doi.org/10.1016/j.ijhydene.2017.07.086
- Roh, H., Potdar, H. and Jun, K., "Carbon Dioxide Reforming of Methane over co-precipitated Ni-CeO2, Ni-ZrO2 and Ni-Ce-ZrO2 Catalysts," Catalysis Today, 93-95, 39-44(2004). https://doi.org/10.1016/j.cattod.2004.05.012
- Zhang, J., Xu, H., Jin, X., Ge, Q. and Li, W., "Characterizations and Activities of the Nano-sized Ni/Al2O3 and Ni/La-Al2O3 Catalysts for NH3 Decomposition," Applied Catalysis A: General, 290(12), 87-96(2005). https://doi.org/10.1016/j.apcata.2005.05.020
- Jimenez-Gonzalez, C., Boukha, Z., Rivas, B. D., Gonzalez-Velasco, J. R., Gutierrez-Ortiz, J. I. and Lopez-Fonseca, R., "Behavior of Coprecipitated NiAl2O4/Al2O3 Catalysts for Low-Temperature Methane Steam Reforming," Energy & Fuels, 28(11), 7109-7121(2014). https://doi.org/10.1021/ef501612y
- Zheng, W., Zhang, J., Ge, Q., Xu, H. and Li, W., "Effects of CeO2 Addition on Ni/Al2O3 Catalysts for the Reaction of Ammonia Decomposition to Hydrogen," Applied Catalysis B: Environmental 80(1-2), 98-105(2008). https://doi.org/10.1016/j.apcatb.2007.11.008
- Alothman, Z., "A Review: Fundamental Aspects of Silicate Mesoporous Materials," Materials, 5(12), 2874-2902(2012). https://doi.org/10.3390/ma5122874
- Marinho, A. L., Rabelo-Neto, R. C., Epron, F., Bion, N., Toniolo, F. S. and Norhonha, F. B, "Embedded Ni Nanoparticles in CeZrO2 as Stable Catalyst for Dry Reforming of Methane," Applied Catalysis B: Environmental, 268, 118387-118404(2020). https://doi.org/10.1016/j.apcatb.2019.118387
- Zheng, Y., Li, K., Wang, H., Zhu, X., Wei, Y., Zheng, M. and Wang, Y., "Enhanced Activity of CeO2-ZrO2 Solid Solutions for Chemical-Looping Reforming of Methane via Tuning the Macroporous Structure," Energy & Fuels, 30(1), 638-647(2015). https://doi.org/10.1021/acs.energyfuels.5b02151