DOI QR코드

DOI QR Code

The Effect of the Mixing Order on PVA Fiber-Reinforced Cementitious Composites with CNTs

CNT 혼입 PVA 섬유보강 시멘트 복합체에서의 배합 순서에 따른 영향

  • Seong-Hyun Park (Department of Civil Engineering, Kyungpook National University) ;
  • Dongmin Lee (Department of Civil Engineering, Kyungpook National University) ;
  • Seong-Cheol Lee (Department of Civil Engineering, Kyungpook National University)
  • 박성현 (경북대학교 토목공학과) ;
  • 이동민 (경북대학교 토목공학과) ;
  • 이성철 (경북대학교 토목공학과)
  • Received : 2023.04.19
  • Accepted : 2023.05.25
  • Published : 2023.06.30

Abstract

This study analyzed the effect of mixing order on the flowability, compressive strength, and flexural strength of cement composites reinforced with polyvinyl alcohol(PVA) fibers and multi-walled carbon nanotubes(MWCNTs). The experimental results showed that the addition of CNTs significantly reduced the flowability, and the flowability was considerably affected by the mixing order when CNTs were added. The compressive strength was most effectively improved when water and CNTs solution were mixed first before adding PVA fibers, and the flexural strength was highest when water and CNTs solution were mixed with PVA fibers after dry mixing. However, there was no clear correlation between the flexural toughness and the mixing order. In addition, scanning electron microscopy(SEM) image analysis was conducted to analyze the microstructure. The SEM images showed that CNTs were randomly dispersed through the specimens and contributed to the strength improvement, but the effect of the mixing order was not clearly observed. The main results of this study are expected to be useful for evaluations of workability and material performance of PVA fiber-reinforced cement composites with CNTs.

이 연구는 다중벽 탄소나노튜브(MWCNTs) 혼입 PVA 섬유보강 시멘트 복합체에서 배합 순서에 따른 영향을 분석하기 위해 배합 순서를 변수로 고려한 실험을 통해 유동성, 압축 및 휨인장 성능을 분석하였다. 실험 결과, CNT 혼입으로 인하여 유동성이 크게 감소하였으며, CNT가 혼입된 경우 배합 순서에 따라 유동성이 크게 영향을 받는 것으로 나타났다. 압축 강도는 물과 CNT 수용액을 미리 섞어 혼입한 후 PVA 섬유를 혼입하는 순서가 가장 강도 증진 효과가 뛰어난 것으로 나타났으며, 휨인장강도는 건비빔 후 물과 CNT 수용액, PVA 섬유를 미리 섞은 후 배합한 방식이 가장 높은 것으로 나타났다. 다만, 휨인장 거동에서 연성도는 배합 순서와의 연관성이 명확하게 나타나지 않았다. 또한, 미세구조에의 영향을 분석하기 위해 주사전자현미경(SEM) 이미지 분석을 수행하였다. SEM 이미지 분석 결과, 모든 시편에서 CNT가 골고루 분산되어 분포하고 있는 것으로 나타나 CNT가 강도 증진 효과에 기여하고 있는 것을 확인할 수 있었으나, 배합방식으로 인한 차이는 명확하게 나타나지 않았다. 이 연구의 주요 결과는 향후 CNT 혼입 PVA 섬유보강 시멘트 복합체의 작업성 및 재료성능 평가 관련 연구에 유용할 것으로 기대된다.

Keywords

Acknowledgement

이 논문은 2020년도 정부(교육부) 재원 한국연구재단의 지원(No.2020R1I1A3073831)으로 수행되었으며, 이에 감사드립니다.

References

  1. ASTM. (2002). Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression, C469-02, West Conshohocken, PA.
  2. Bharj, J., Singh, S., Chander, S., Singh, R. (2014). Experimental study on compressive strength of cement-CNT composite paste, Indian Journal of Pure & Applied Physics(IJPAP), 52(1), 35-38.
  3. Brandt, A.M. (2008). Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering, Composites Structures, 86, 3-9. https://doi.org/10.1016/j.compstruct.2008.03.006
  4. Collins, F., Lambert, J., Duan, W.H. (2012). The influences of admixtures on the dispersion, workability, and strength of carbon nanotube-OPC paste mixtures, Cement and Concrete Composites, 34(2), 201-207. https://doi.org/10.1016/j.cemconcomp.2011.09.013
  5. Isfahani, F.T., Li, W., Redaelli, E. (2016). Dispersion of multi-walled carbon nanotubes and its effects on the properties of cement composites, Cement and Concrete Composites, 74, 154-163. https://doi.org/10.1016/j.cemconcomp.2016.09.007
  6. Kang, S.T., Park, S.H. (2014). Experimental study on improving compressive strength of MWCNT reinforced cementitious composites, Journal of the Korea Concrete Institute, 26(1), 63-70. https://doi.org/10.4334/JKCI.2014.26.1.063
  7. Korean Standards Association. (2007). Test Method for Concrete Slump, KS F 2402 [In Korean].
  8. Korean Standards Association. (2010). Standard Test Method for Compressive Strength of Concrete, KS F 2405 [In Korean].
  9. Korean Standards Association. (2016). Ready-Mixed Concrete, KS F 2594 [In Korean].
  10. Kumar, S., Kolay, P., Malla, S., Mishra, S. (2012). Effect of multiwalled carbon nanotubes on mechanical strength of cement paste, Journal of Materials in Civil Engineering, 24(1), 84-91. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000350
  11. Lee, D., Lee, S.C., Yoo, S.W. (2022). Workability and compressive behavior of PVA-ECC with CNTs, Geomechanics and Engineering, 29(3), 311-320.
  12. Lee, G.W., Han, J.T. (2007). Dispersion of carbon nanotubes(CNTs) and CNT-based transparent conductive films, Korean Industrial Chemistry News, 10(4), 8-19 [In Korean].
  13. Lee, S.H., Kim, S., Yoo, D.Y. (2018). Hybrid effects of steel fiber and carbon nanotube on self-sensing capability of ultra-high-performance concrete, Construction and Building Materials, 185, 530-544. https://doi.org/10.1016/j.conbuildmat.2018.07.071
  14. Malikov, E.Y. (2020). The effect of polyvinyl alcohol functionalized multiwall carbon nanotubes on the improvement of the compressive strength of concrete, Fullerenes, Nanotubes and Carbon Nanostructures, 28(10), 781-785. https://doi.org/10.1080/1536383X.2020.1759557
  15. Paredes, J.I., Burghard, M. (2004). Dispersions of individual single-walled carbon nanotubes of high length, Langmuir, 20(12), 5149-5152. https://doi.org/10.1021/la049831z
  16. Rhee, I., Roh, Y.S. (2013). Properties of normal-strength concrete and mortar with multi-walled carbon nanotubes, Magazine of Concrete Research, 65(16), 951-961. https://doi.org/10.1680/macr.12.00212
  17. Saez de Ibarra, Y., Gaitero, J. J., Erkizia, E., Campillo, I. (2006). Atomic force microscopy and nanoindentation of cement pastes with nanotube dispersions, Physica Status solidi (a), 203(6), 1076-1081. https://doi.org/10.1002/pssa.200566166
  18. Wang Q., Cui, X., Wang, J., Li, S., Lv, C., Dong, Y. (2017). Effect of fly ash on rheological properties of graphene oxide cement paste, Construction and Building Materials, 138, 35-44. https://doi.org/10.1016/j.conbuildmat.2017.01.126
  19. Wang, Z., Yu, J., Li, G., Zhang, M., Leung, C.K. (2019). Corrosion behavior of steel rebar embedded in hybrid CNTs-OH/polyvinyl alcohol modified concrete under accelerated chloride attack, Cement and Concrete Composites, 100, 120-129. https://doi.org/10.1016/j.cemconcomp.2019.02.013
  20. Xu, H., Shao, Z., Wang, Z., Cai, L., Li, Z., Jin, H., Chen, T. (2020). Experimental study on mechanical properties of fiber reinforced concrete: effect of cellulose fiber, polyvinyl alcohol fiber and polyolefin fiber, Construction and Building Materials, 261, 120610.
  21. Yun, H.D., Kim, Y.C., Kim, S.W. (2008). Effect of reinforcing fiber types on the behavior characteristics of SHCCs, Journal of the Architectural Institute of Korea. 24(5), 141-148.
  22. Zollo, R.F. (1997). Fiber-reinforced concrete: an overview after 30 years of development, Cement and concrete composites, 19(2), 107-122. https://doi.org/10.1016/S0958-9465(96)00046-7
  23. Zou, B., Chen, S.J., Korayem, A.H., Collins, F., Wang, C. M., Duan, W.H. (2015). Effect of ultrasonication energy on engineering properties of carbon nanotube reinforced cement pastes, Carbon, 85, 212-220. https://doi.org/10.1016/j.carbon.2014.12.094