DOI QR코드

DOI QR Code

PET 기재 위에 항균성과 김서림 방지 기능을 갖는 코팅 도막 제조

Preparation of Coating Film with Antibacterial and Antifogging Function on PET Substrate

  • 권호찬 (건양대학교 의료신소재학과) ;
  • 송기창 (건양대학교 의료신소재학과)
  • Ho Chan Kwon (Department of Biomedical Materials, Konyang University) ;
  • Ki Chang Song (Department of Biomedical Materials, Konyang University)
  • 투고 : 2023.03.21
  • 심사 : 2023.07.03
  • 발행 : 2023.08.01

초록

본 연구에서는 질산은을 PVA로 환원시켜 은 나노입자를 합성하였으며, 얻어진 은 나노입자에 Carboxymethyl cellulose (CMC)를 첨가시켜 제조된 용액을 PET 기재 위에 코팅함에 의해 항균 특성과 김서림 방지 기능을 갖는 코팅 도막을 제조하였다. 코팅 도막을 80 ℃의 수증기와 접촉 시 코팅되지 않은 PET 기재는 김서림 발생으로 인한 빛의 산란이 발생해 흐려진 결과를 보인 반면에 CMC가 첨가된 은 나노졸로 코팅된 도막은 수증기와의 접촉에도 불구하고 투명한 상태를 유지하여 김서림 방지 기능이 우수하였다. 또한 코팅 도막의 항균성을 그램 양성균인 포도상구균과 그람 음성균인 대장균에 대해 필름 밀착법으로 측정하였다. 코팅되지 않은 PET 기재에서는 많은 포도상구균과 대장균의 집락이 관찰된 반면에 은 나노졸로 코팅된 도막은 포도상구균과 대장균의 성장이 크게 억제되어 항균 효과가 우수하였다.

In this study, silver nanoparticles were synthesized by reducing silver nitrate with PVA, and the solution prepared by adding carboxymethyl cellulose (CMC) to the silver nanoparticles was coated on a PET substrate to prepare a coating film with antibacterial and antifogging function. When the coating films were in contact with water vapor at 80 ℃, the uncoated PET substrate was blurred due to the scattering of light due to the occurrence of fog, while the coating film coated with silver nanosol with CMC remained transparent despite contact with water vapor, showing excellent antifogging function. In addition, the antibacterial properties of the coating films were measured by film adhesion method for Staphylococcus aureus, gram-positive bacteria, and Escherichia coli, gram-negative bacteria. The uncoated PET substrate showed a large number of colonies of Staphylococcus aureus and Escherichia coli, while the coating film coated with the silver nanosol greatly inhibited the growth of Staphylococcus aureus and Escherichia coli, resulting in excellent antibacterial effect.

키워드

과제정보

이 논문은 2023년도 정부(산업통상자원부)의 재원으로 한국산업기술진흥원의 바이오융복합기술 전문인력 양성사업의 지원을 받아 수행된 연구임(No. P0017805).

참고문헌

  1. Chang, C. C., Huang, F. H., Chang, H. H., Don, T. M., Chen, C. C. and Cheng, L. P., "Preparation of Water-Resistant Antifog Hard Coatings on Plastic Substrate," Langmuir, 28, 17193-17201 (2012). https://doi.org/10.1021/la304176k
  2. Chang, C. C., Lin, Z. M. and Cheng, L. P., "Preparation of Superhydrophilic Nanosilica/Polyacrylate Hard Coatings on Plastic Substrate for Antifogging and Frost-Resistant Applications," J. Appl. Polym. Sci., 48144, 1-8(2019).
  3. Chang, C.-C., Tsai, T.-Y. and Cheng, L.-P., "Preparation of Nanosilica/Polyacrylate Antifog Coatings on Polycarbonate Substrates," J. Appl. Sci. Eng., 22, 153-162(2019).
  4. Chang, C. C., Lin, Z. M. and Cheng, L. P., "Preparation of Organic-Inorganic Hybridized Dual-Functional Antifog/Antireflection Coatings on Plastic Substrates," J. Appl. Polym. Sci., 48822, 1-7(2019).
  5. Bretler, S., Kanovsky, N., Iline-Vul, T., Cohen, S. and Margel, S., "In-Situ Thin Coating of Silica Micro/Nano-Particles on Polymeric Films and Their Anti-Fogging Application," Colloids Surf A. Physicochem. Eng. Asp., 125444, 1-9(2020).
  6. Wei, H.-S., Liu, K.-T., Chang, Y.-C., Chan, C.-H., Lee, C.-C. and Kuo, C.-C., "Superior Mechanical Properties of Hybrid Organic-Inorganic Superhydrophilic Thin Film on Plastic Substrate," Surf. Coat. Technol. 320, 377-382(2017). https://doi.org/10.1016/j.surfcoat.2016.12.025
  7. Xu, X., Zhu, T., Zheng, W., Xian, C., Huang, J., Chen, Z., Cai, W., Zhang, W. and Lai, Y., "A Robust and Transparent Hydrogel Coating for Sustainable Antifogging with Excellent Self-Cleaning and Self-Healing Ability," Chem. Eng. J.. 137879, 1-9(2023).
  8. Zhang, X. and He, J., "One-Step Construction of Antifogging and Frost-Resisting Coatings on Flexible Substrates," Int. J. Nanosci., 1460015, 1-4(2015). https://doi.org/10.1142/S0219581X14600151
  9. Xu, C.-A., Qu, Z., Lu, M., Meng, H., Zhan, Y., Chen, B., Wu, K. and Shi, J., "Effect of Rosin on the Antibacterial Activity Against S.aureus and Adhesion Properties of Uv-Curable Polyurethane/Polysiloxane Pressure-Sensitive Adhesive," Colloids Surf. A. Physicochem. Eng. Asp. 126146, 1-10(2021).
  10. Perez-Alvarez, L., Ruiz-Rubio, L., Azua, I., Benito, V., Bilbao, A. and Vilas-Vilela, J. L., "Development of Multiactive Antibacterial Multilayers of Hyaluronic Acid and Chitosan onto Poly(ethylene terephthalate)," Eur. Polym. J., 112, 31-37(2019). https://doi.org/10.1016/j.eurpolymj.2018.12.038
  11. Bryaskova, R., Pencheva, D., Kale, G. M., Lad, U. and Kantardjiev, T., "Synthesis, Characterization and Antibacterial Activity of PVA/TEOS/Ag-Np Hybrid Thin Films," J. Colloid Interface Sci., 349, 77-85(2010). https://doi.org/10.1016/j.jcis.2010.04.091
  12. Jia, B., Mei, Y., Cheng, L., Zhou, J. and Zhang, L., "Preparation of Copper Nanoparticles Coated Cellulose Films with Antibacterial Properties Through One-Step Reduction," ACS Appl. Mater. Interfaces 4, 2897-2902(2012). https://doi.org/10.1021/am3007609
  13. Fragal, V. H., Cellet, T. S., Pereira, G. M., Fragal, E. H., Costa, M. A., Nakamura, C. V., Asefa, T., Rubira, A. F. and Silva, R., "Covalently-Layers of PVA and PAA and in Situ Formed Ag Nanoparticles as Versatile Antimicrobial Surfaces," Int. J. Biol. Macromol., 91, 329-337(2016). https://doi.org/10.1016/j.ijbiomac.2016.05.056
  14. Ren, J., Kong, R., Gao, Y., Zhang, L. and Zhu, J., "Bioinspired Adhesive Coatings from Polyethylenimine and Tannic Acid Complexes Exhibiting Antifogging, Self-Cleaning, and Antibacterial Capabilities," J. Colloid. Interface. Sci., 602, 406-414(2021). https://doi.org/10.1016/j.jcis.2021.06.032
  15. Min, T., Zhu, Z., Sun, X., Yuan, Z., Zha, J. and Wen, Y., "Highly Efficient Antifogging and Antibacterial Food Packaging Film Fabricated by Novel Quaternary Ammonium Chitosan Composite," Food Chem., 125682, 1-8(2020).
  16. Castillo, G. A., Dickey, M. D., Gorman, C. B., Genzer, J. and Efimenko, K., "Deposition of Silicate Coatings on Poly(ethylene terephthalate) for Improved Scratch and Solvent Resistance," J. Appl. Polym. Sci., 139(11), e51800(2022).
  17. Zielinska, A., Skwarek, E., Zaleska, A., Gazda, M. and Hupka, J., "Preparation of Silver Nanoparticles with Controlled Particle Size," Procedia Chem., 1(2), 1560-1566(2009). https://doi.org/10.1016/j.proche.2009.11.004
  18. Lee, S. M., Lee, B. S., Byun, T. G. and Song, K. C., "Preparation and Antibacterial Activity of Silver-Doped Organic-Inorganic Hybrid Coatings on Glass Substrates," Colloids Surf. A: Physicochem Eng. Asp., 355, 167-171(2010). https://doi.org/10.1016/j.colsurfa.2009.12.010
  19. Lee, S. M., Song, K. C. and Lee, B. S., "Antibacterial Activity of Silver Nanoparticles Prepared by a Chemical Reduction Method," Korean J. Chem. Eng., 27, 688-692(2010). https://doi.org/10.1007/s11814-010-0067-0
  20. Edison, T. J. I. and Sethuraman, M. G., "Instant Green Synthesis of Silver Nanoparticles Using Terminalia Chebula Fruit Extract and Evaluation of Their Catalytic Activity on Reduction of Methylene Blue," Process Biochem., 47, 1351-1357(2012). https://doi.org/10.1016/j.procbio.2012.04.025
  21. Darroudi, M., Ahmad, M. B., Abdullah, A. H., Ibrahim, N. A. and Shameli, K., "Effect of Accelerator in Green Synthesis of Silver Nanoparticles," Int. J. Mol. Sci., 11, 3898-3905(2010). https://doi.org/10.3390/ijms11103898
  22. Ahmed, S., Saifullah, Ahmad, M., Swami, B. L. and Ikram, S., "Green Synthesis of Silver Nanoparticles Using Azadirachta Indica Aqueous Leaf Extract," J. Radiat. Res. Appl. Sci., 9, 1-7 (2016). https://doi.org/10.1016/j.jrras.2015.06.006
  23. Kim, J. Y., Kim, T. and Yoon, J., "Antimicrobial Activity and Mechanism of Silver," J. Korean Ind. Eng. Chem., 20, 251-257 (2009).
  24. Liu, S., He, J., Xue, J. and Ding, W., "Efficient Fabrication of Transparent Antimicrobial Poly(vinyl alcohol) Thin Films," J. Nanopart. Res., 11, 553-560(2007).
  25. Zhang, X. and He, J., "Hydrogen-Bonding-Supported Self-Healing Antifogging Thin Films," Sci. Rep., 5, 9227, 1-4(2015).