DOI QR코드

DOI QR Code

Fabrication of High-power Shingled PV Modules Integrated with Bent Steel Plates for the Roof

절곡 강판 일체형 고출력 슁글드 태양광 모듈 제조

  • Eunbi Lee (Green Energy & Nano Technology R&D Group, Korea Institute of Industrial Technology) ;
  • Min-Joon Park (Green Energy & Nano Technology R&D Group, Korea Institute of Industrial Technology) ;
  • Minseob Kim (Green Energy & Nano Technology R&D Group, Korea Institute of Industrial Technology) ;
  • Jinho Shin (Green Energy & Nano Technology R&D Group, Korea Institute of Industrial Technology) ;
  • Sungmin Youn (Green Energy & Nano Technology R&D Group, Korea Institute of Industrial Technology)
  • 이은비 (그린에너지나노연구그룹, 한국생산기술연구원) ;
  • 박민준 (그린에너지나노연구그룹, 한국생산기술연구원) ;
  • 김민섭 (그린에너지나노연구그룹, 한국생산기술연구원) ;
  • 신진호 (그린에너지나노연구그룹, 한국생산기술연구원) ;
  • 윤성민 (그린에너지나노연구그룹, 한국생산기술연구원)
  • Received : 2023.03.13
  • Accepted : 2023.04.20
  • Published : 2023.06.30

Abstract

Recently, requirements for improving the convenience of constructing BIPV (Building Integrated Photo Voltaic) modules had increased. To solve this problem, we fabricated shingled PV modules integrated with bent steel plates for building integrated photovoltaics. These PV modules could be constructed directly on the roof without the installation structure. We found optimal lamination conditions with supporting structures to fabricate a module on a bent steel plate. Moreover, we applied a shingled design to PV modules integrated with bent steel plates to achieve a high electrical output power. The shingled module with bent steel plates shows 142.80 W of solar-to-power conversion in 0.785 m2 area.

Keywords

Acknowledgement

본 연구는 2021년도 산업통산자원부의 재원으로 한국에너지기술평가원(KETEP)의 지원 과제인 "장기신뢰성(25년 이상)과 안전성이 확보된 건물형 태양광 핵심소재 개발"(No. 20213030010290)을 통해 수행한 과제입니다.

References

  1. Photovoltaic report 2022. Available online: https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf
  2. Spring 2022 Solar Industry Update. Available online: https://www.nrel.gov/docs/fy22osti/82854.pdf
  3. Jelle B. P., "Building Integrate Photovoltaics: A Concise Description of the Cuttent State of the Art and Possible Research Pathways," Energies, 9, 21 1-20 (2016).
  4. Kuhn T. E., Erban C., Heinrich M., Eisenlohr J., Ensslen F., Neuhaus D. H., "Review of technological design options for building integrated photovoltaics (BIPV)", Energy & Buildings, 231, 110381 1-26 (2021). https://doi.org/10.1016/j.enbuild.2020.110381
  5. Dai Y., Bai Y., "Performance Improvement for Building Integrated Photovoltaics in Practice: A Review", Energies.
  6. Park, M., Youn, S., Jeon, K., Lee, S., Jeong, C., "Optimization of Shingled-Type Lightweight Glass-Free Solar Modules for Building Integrated Photovoltaics", Appl. Sci., 12, 5011 1-7 (2022). https://doi.org/10.3390/app12105011
  7. Tonini D., Cellere G., Bertazzo M., Fecchio A., Cerasti L., Galiazzo M., "Shingling Technology For Cell Interconnection: Technological Aspects And Process Integration", Energy Procedia, 150, 36-48 (2018). https://doi.org/10.1016/j.egypro.2018.09.010
  8. Park J., Oh W., Park H., Jeong C., Chio B., Lee J., "Analysis of solar cells interconnected by electrically conductive adhesives for high-density photovoltaic modules", Appl. Surf. Sci., 484, 732-739 (2019). https://doi.org/10.1016/j.apsusc.2019.03.307