DOI QR코드

DOI QR Code

Anti-aging effect of Codium fragile extract on keratinocytes damaged by fine dust PM10

미세먼지 PM10으로 손상을 유도한 각질형성세포에서 청각 (Codium fragile) 추출물의 항노화 효과

  • Bo Ae Kim (Department of Cosmetic Engineering, College of Technology Sciences, Mokwon University)
  • 김보애 (목원대학교 테크노과학대학 화장품공학과)
  • Received : 2023.06.12
  • Accepted : 2023.07.25
  • Published : 2023.07.30

Abstract

Objectives : Fine dust caused by environmental pollution cause oxidative damage and skin aging. In this study, The possibility of using the Codium fragile extract (CFE) as an anti-aging product for skin improvement was evaluated by confirming the protective effect of skin cells from PM10 (particulate matter 10) through inhibition of ROS and MMPs. Methods : In this study, elastase and collagenase inhibitory activities were evaluated. Cell viability was evaluated by treating keratinocytes (HaCaT cell line) with CFE at various concentrations. The cytoprotective effect from PM10 in keratinocyteswas evaluated using the 3-[4,5-dimethylthiazol]-2-yl]-2,5-diphenyl-tetrazoliumbromide (MTT) assay. ROS (reactive oxygen species) was measured in keratinocytes damaged by PM10 using DCF-DA (2′,7′-dichlorofluorescin diacetate) fluorescence staining. As an anti-aging effect of CFE, MMP-1 (matrix metalloproteinase-1) and MMP-1 (matrix metalloproteinase-9) inhibitory activities were evaluated. Results : As a result, CFE decreased the activity of elastase and collagenase. As a result of evaluating the toxicity of CFE, it is non-toxic at a concentration of 10 to 80 ㎍/㎖. Although cell viability of HaCaT cells treated with PM10 decreased, cell viability increased by 38% when treated with CFE 80 ㎍/㎖. Also, ROS decreased by 8.4%, and MMP-1 and MMP-9 decreased at CFE 80 ㎍/㎖. Conclusions : CFE showed excellent cell protection effect, and it is considered that it can be used in anti-aging products for skin improvement by effectively inhibiting ROS and MMPs from keratinocyte damage caused by fine dust.

Keywords

References

  1. Mukherjee A. Agrawal M. World air particulate matter: Sources, distribution and health effects. Environ. Chem. Lett. 2017 ; 15 : 283-309. https://doi.org/10.1007/s10311-017-0611-9 
  2. Ngoc LTN, Park D, Lee Y, Lee YC. Systematic Reviewand Meta-Analysis of Human Skin Diseases Due to Particulate Matter. Int. J. Environ. Res. Public Health. 2017 ; 14 : 1458-69. https://doi.org/10.3390/ijerph14121458 
  3. Kim KE, Cho D, Park HJ. Air pollution and skin diseases: Adverse effects of airborne particulate matter on various skin diseases. Life Sci. 2016 ; 152 : 126-34. https://doi.org/10.1016/j.lfs.2016.03.039 
  4. Krzyzanowski M. WHO Air Quality Guidelines for Europe. J. Toxicol. Environ. Health A. 2008 ; 71(1) : 47-50. https://doi.org/10.1080/15287390701557834 
  5. Fuzzi S, Baltensperger U, Carslaw K, Decesari S, Der GHD, Facchini MC. Fowler DK, Langford B, Lohmann U. Particulate matter, air quality and climate: Lessons learned and future needs. Atmos. Chem. Phys. 2015 ; 15(14) : 8217-99. https://doi.org/10.5194/acp-15-8217-2015 
  6. Zhu X, Qiu H, Wang L, Duan Z, Yu H, Deng R, Zhang Y, Zhou L. Risks of hospital admissions from a spectrum of causes associated with particulate matter pollution. Sci. Total Environ. 2019 ; 656 : 90-100. https://doi.org/10.1016/j.scitotenv.2018.11.240 
  7. Lee CW, Lin ZC, Hsu LF, Fang Y, Chiang YC, Tsai MH, Lee MH, Li SY, Hu SC, Lee IT. Eupafolin ameliorates COX-2 expression and PGE2 production in particulate pollutants-exposed human keratinocytes through ROS/MAPKs pathways. J. Ethnopharmacol. 2016 ; 189 : 300-9. https://doi.org/10.1016/j.jep.2016.05.002 
  8. Ha JW, Song H, Hong SS, Boo YC. Marine Alga Ecklonia cava Extract and Dieckol Attenuate Prostaglandin E2 Production in HaCaT Keratinocytes Exposed to Airborne Particulate Matter. Antioxidants. 2019 ; 8(6) : 190-5. https://doi.org/10.3390/antiox8060190 
  9. Boo YC. Can Plant Phenolic Compounds Protect the Skin from Airborne Particulate Matter?. Antioxidants. 2019 : 8(9) : 379-97. https://doi.org/10.3390/antiox8090379 
  10. Bae IA, Ha JW, Choi JY, Boo YC. Antioxidant Effects of Korean Propolis in HaCaT Keratinocytes Exposed to Particulate Matter 10. Antioxidants. 2022 ; 11(4) : 781-99. https://doi.org/10.3390/antiox11040781 
  11. Kim KE, Cho D, Park HJ. Air pollution and skin diseases: adverse effects of airborne particulate matter on various skin diseases. Life Sci. 2016 ; 152 : 126-34. https://doi.org/10.1016/j.lfs.2016.03.039 
  12. Chieosilapatham P, Kiatsurayanon C, Umehara, JV, Trujillo-Paez, Peng GHY, Nguyen LTH, Niyonsaba F. Keratinocytes: innate immune cells in atopic dermatitis. Clin. Exp. Immunol. 2021 ; 204(3) : 296-309. https://doi.org/10.1111/cei.13575 
  13. Lee JB, Ohta Y, Hayashi KT. Immunostimulating effects of sulfated galactan from Codium fragile. Carbohydr Res. 2010 ; 345(10) : 1452-4. https://doi.org/10.1016/j.carres.2010.02.026 
  14. Oh YS, Lee IK, Boo SM. An annotated account of Korean economic seaweeds for food, medical and industrial uses. Algae. 1990 ; 5(1) : 57-71. 
  15. Chengkui Z, Tseng CK, Junfu Z, Chang CF. Chinese seaweeds in herbal medicine. Hydrobiologia. 1984 ; 116 : 152-4.  https://doi.org/10.1007/BF00027655
  16. Kang CH, Choi YH, Park SY, Kim GY. Antiinflammatory effects of methanol extract of Codium fragile in lipopolysaccharide-stimulated RAW 264.7 cells. J. Med. Food. 2012 ; 15(1) : 44-50. https://doi.org/10.1089/jmf.2010.1540 
  17. Cho KJ, Lee YS, Ryu BH. Antitumor effect and immunology activity of seaweeds toward sarcoma-180. Korean J. Fish. Aqua. Sci. 1990 ; 23(5) : 345-352. 
  18. Rogers DJ, Jurd KM, Blunden G, Paoletti S. Zanetti F. Anticoagulant activity of a proteoglycan in extracts of Codium Fragile sp. atlanticum. J. Appl. Phycol. 1990 ; 2 :357-61.  https://doi.org/10.1007/BF02180926
  19. Rogers DJ, Loveless RW. Electron microscopy of human erythrocytes aglutinated by lectin from Codium fragile sp. tomentosoides and pseudohaemagglutinin from Ascophyllum nodosum. J. Appl. Phycol. 1991 ; 3 : 83-6.  https://doi.org/10.1007/BF00003921
  20. Lee AR, Kim SH, Kim SJ, Kim KJ, Kwon O, Choi JY, Roh SS. Anti-skin-aging Effect of Mori Folium through decreased Advanced glycation end product (AGEs). Kor. J. Herbol. 2017;32(5):7-12. http://dx.doi. org/10.6116/kjh.2017.32.5.7. 
  21. Lee EH, Cho YJ. Elevation of anti-oxidative activity and inhibitory activities against tyrosinase, elastase, collagenase and hyaluronidase of Oplismenus undulatifolius by elicitor treatment. J Appl Biol Chem. 2020 ; 63(3) : 221-7. https://doi.org/10.3839/jabc.2020.030 
  22. Kraunsoe JA, Claridge TD, Lowe G. Inhibition of human leukocyte and porcine pancreatic elastase by homologues of bovine pancreatic trypsin inhibitor. Biochemistry. 1996 ; 35 : 9090-6. https://doi.org/10.1021/bi953013b 
  23. Kim CJ, Shim JK, Kwon KC, Lim JD, Choi SK, Yu CY, Lee JG. Changes in Non-saponin Fatty Acid Content and Increases in Inhibitory Activities of Collagenase and Elastase by Treatment with Saccharomyces cerevisiae of the Supercritical Fluid Extracted Oil of the Adventitious Roots Culture of Wild Mountain Ginseng Korean. J. Medicinal Crop Sci. 2018 ; 26(2) : 170-80. http://dx.doi.org/10.7783/KJMCS.2018.26.2.170 
  24. Wunsch E, Heidrich HG. For the quantitative determination of collagenase. Hoppe-Seyler's Physiol Chem. 2009 ; 333 : 149-51. https://doi.org/10.1515/bchm2.1963.333.1.149 
  25. Seok JK, Lee JW, Kim YM, Boo YC. Punicalagin and (-)-epigallocatechin-3-gallate rescue cell viability and attenuate inflammatory responses of human epidermal keratinocytes exposed to airborne particulate matter PM10. Skin Pharmacol. Physiol. 2018 ; 31(3) : 134-43. https://doi.org/10.1159/000487400 
  26. Park JY, Hwang J, Yun JK, Han KH, Do EJ, Kim Sung OK, Kim MR. Effect of Ssanghwa-tang Extract on Antioxidant and Anti-aging Enzyme Activities. Kor. J. Herbol. 2012;27(3):67-74. https://doi.org/10.6116/kjh.2012.27.3.67 
  27. Youn SN, Kim YJ, Lee YJ, Kim MR, Yoo WK. Effect of ethanol extract from mixture including Angelicae Dahuricae Radix on Dermal Anti-aging and Whitening. Kor. J. Herbol. 2019;34(6):109-15. http://dx.doi.org/10.6116/kjh.2019.34.6.109. 
  28. Federico A, Morgillo, Tuccillo FC, Ciardiello F, Loguercio C. Chronic inflammation and oxidative stress in human carcinogenesis. Int. J. Cancer. 2007 ; 121(11) : 2381-6. https://doi.org/10.1002/ijc.23192 
  29. Choi MK, Kim J, Park HM, Lim CM, Pham TH, Ha Shin Y, Kim SE, Oh DK, Yoon DY. The DPA-derivative 11S, 17S-dihydroxy 7,9,13,15,19 (Z,E,Z,E,Z)-docosapentaenoic acid inhibits IL-6 production by inhibiting ROS production and ERK/NF-κB pathway in keratinocytes HaCaT stimulated with a fine dust PM10. Ecotoxicology and Environmental Safety. 2022 ; 232 : 113252. https://doi.org/10.1016/j.ecoenv.2022.113252 
  30. Kim MS, Kim MK, Han DH, Ko K, Kim SY. Antibacterial Activity and other Functions of Codium fragile and Chaenomeles sinensis Extracts by Extraction Method. Korean S. Bio Journal. 2018 ; 33(2) : 89-94. http://dx.doi.org/10.7841/ksbbj.2018.33.2.89 
  31. Shin DB, Han EH, Park SS. Cytoprotective Effects of Phaeophyta Extracts from the Coast of Jeju Island in HT-22 Mouse Neuronal Cells. J Korean Soc Food Sci Nutr. 2014 ; 42(2) : 224-30. http://dx.doi.org/10.3746/jkfn.2014.43.2.224 
  32. Kolsi RBA, Salah HB, Hamza A, Elfeki A, Belguith K. Characterization and evaluating of antioxidant and antihypertensive properties of green alga (Codium fragile) from the coast of Sfax. Journal of Pharmacognosy and Phytochemistry. 2017 ; 6(2) : 186-91. 
  33. Lee JH, Kim BA. A Study on Seaweed Sea Staghorn (Codium fragile) Ethanol Extract for Antioxidant. The journal of Convergence on Culture Technology. 2019 ; 5(4) : 467-72. https://doi.org/10.17703/JCCT.2019.5.4.467 
  34. Lee C, Park GH, Ahn EM, Kim BA, Park CI, Jang JH. Protective effect of Codium fragile against UVB-induced pro-inflammatory and oxidative damages in HaCaT cells and BALB/c mice. Fitoterapia. 2013 ; 86 : 54-63. https://doi.org/10.1016/j.fitote.2013.01.020 
  35. Bailly C, El MB, Corbineau HF. From intracellular signaling networks to cell death: The dual role of reactive oxygen species in seed physiology. Comptes Rendus. Biol. 2008 ; 331(10) : 806-14. https://doi.org/10.1016/j.crvi.2008.07.022 
  36. Vurusaner B. Poli G. Basaga H. Tumor suppressor genes and ROS: Complex networks of interactions. Free. Radic. Biol. Med. 2012 ; 52(1) : 7-18. https://doi.org/10.1016/j.freeradbiomed.2011.09.035 
  37. Dai J, Ma H, Fan J, Li Y, Wang J, Ni H, Xia G, Chen S. Crude polysaccharide from an anti-UVB cell clone of Bupleu-rum scorzonerifolium protect HaCaT cells against UVB-induced oxidative stress. Cytotechnology. 2011 ; 63(6) : 599-607. https://doi.org/10.1007/s10616-011-9381-6 
  38. Seok JK, Choi MA, Ha JW, Boo YC. Role of Dual Oxidase 2 in Reactive Oxygen Species Production Induced by Airborne Particulate Matter PM10 in Human Epidermal Keratinocytes. J. Soc. Cosmet. Sci. Korea. 2019 ; 45(1) : 57-67. https://doi.org/10.15230/SCSK.2019.45.1.57 
  39. Cho S, Kim HH, Lee MJ, Lee S, Park CS, Nam SJ, Han JJ, Kim JW, Chung JH. Phosphatidylserine prevents UV-induced decrease of type I procollagen and increase of MMP-1 in dermal fibroblasts and human skin in vivo. J. Lipid Res. 2008 ; 49(6) : 1235-1245. https://doi.org/10.1194/jlr.M700581-JLR200 
  40. Jang YA, Kim BA. Protective Effect of Spirulina-Derived C-Phycocyanin against Ultraviolet B-Induced Damage in HaCaT Cells. Medicina. 2021 ; 16(3) : 273-85. https://doi.org/10.3390/medicina57030273