DOI QR코드

DOI QR Code

Anti-inflammatory Effect of Eleutherococcus senticosus Extracts from Gangwon-do by Plant parts or Solvents

강원도 가시오갈피의 식물 부위 또는 추출 용매 조건에 따른 항염증 효과

  • Junkyu Park (Department of Science in Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University) ;
  • Mina Boo (Department of Science in Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University) ;
  • Soojin An (College of Korean Medicine, Kyung Hee University) ;
  • Sujin Shin (Department of Korean Medicine, College of Korean Medicine, Kyung Hee University) ;
  • Jinbong Park (Department of Pharmacology, College of Korean Medicine, Kyung Hee University) ;
  • Ho-Young Choi (Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University) ;
  • Kyungjin Lee (Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University)
  • 박준규 (경희대학교 대학원 한의과대학 기초한의과학과) ;
  • 부민아 (경희대학교 대학원 한의과대학 기초한의과학과) ;
  • 안수진 (경희대학교 한의과대학 한의학과) ;
  • 신수진 (경희대학교 한의과대학 한의학과) ;
  • 박진봉 (경희대학교 한의과대학 약리학교실) ;
  • 최호영 (경희대학교 한의과대학 본초학교실) ;
  • 이경진 (경희대학교 한의과대학 본초학교실)
  • Received : 2023.05.26
  • Accepted : 2023.07.25
  • Published : 2023.07.30

Abstract

Background : The purpose of this study was to investigate the anti-inflammatory properties of stems and leaves of Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. (ES) from Gangwon-do. Methods and Results : Stems and leaves of ES were collected from two areas in Gangwon-do: Cheorwon-gun and Samcheok-si. Samples were extracted with water by using the pressurized liquid extraction method and with 70% prethanol A by using the heat reflux extraction method. The anti-inflammatory effects of ES were evaluated through the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide(MTT), lactate dehydrogenase(LDH) assay, nitric oxide(NO) assay, enzyme-linked immunosorbent assay(ELISA), and Western blot analysis in RAW 264.7 macrophages stimulated with lipopolysaccharide (LPS). 1) Results showed that ES leaf extractions were not cytotoxic at a concentration of up to 30 ㎍/㎖. The leaves of 70% prethanol A extractions of ES(30 ㎍/㎖) inhibited NO, interleukin-6(IL-6), and tumor necrosis factor-α(TNF-α) production and decreased the protein level of cyclooxygenase 2(COX-2). There was no significant change in the protein level of inducible nitric oxide synthase(iNOS). The stem extractions of ES did not exhibit anti-inflammatory effects. Conclusions : In this study, the leaves of 70% prethanol A extractions of ES demonstrated anti-inflammatory effect on RAW 264.7 macrophages. The 70% prethanol A extractions have a relatively higher anti-inflammatory effect on RAW 264.7 macrophages than water extractions.

Keywords

Acknowledgement

본 성과물(논문)은 농촌진흥청 연구사업(세부과제번호: PJ01704503)의 지원에 의해 이루어진 것임.

References

  1. Kimura Y, Sumiyoshi M. Effects of various Eleutherococcus senticosus cortex on swimming time, natural killer activity and corticosterone level in forced swimming stressed mice. Journal of Ethnopharmacology. 2004;95:447-453. doi: 10.1016/j.jep.2004.08.027
  2. Shrestha SK., Song J, Lee SH, Lee D, Kim H, Soh Y. Eleutherococcus sessiliflorus induces differentiation of prechondrogenic ATDC5 Cells. The Korea Journal of Herbology. 2022;37(1): 51-59. doi: 10.6116/kjh.2022.037.1.51.
  3. Song MK, Kim MY, Kim HC. Standardization of Eleutherococcus species and HPLC Method Validation for Quantitative Analysis. The Korea Journal of Herbology. 2011;26(1):103-110. doi:10.6116/kjh.2011.26.1.103
  4. Jung CH, Jung H, Shin YC, Park JH, Jun CY, Kim HM, Ko SG. Eleutherococcus senticosus extract attenuates LPS-induced iNOS expression through the inhibition of Akt and JNK pathways in murine macrophage. Journal of Ethnopharmacology. 2007;113:183-187. doi: 10.1016/j.jep.2007.05.023
  5. Kwon HO, Lee M, Kim YJ, Kim E, Kim OK. Beneficial Effects of Acanthopanax senticosus Extract in Type II Diabetes Animal Model via Down-Regulation of Advanced Glycated Hemoglobin and Glycosylation End Products. Journal of the Korean Society of Food Science and Nutrition. The Korean Society of Food Science and Nutrition. 2016;45:929-937. doi: 10.3746/jkfn.2016.45.7.929
  6. Lee D, Park J, Yoon J, Kim MY, Choi HY, Kim H. Neuroprotective effects of Eleutherococcus senticosus bark on transient global cerebral ischemia in rats. Journal of Ethnopharmacology. 2012;139:6-11. doi: 10.1016/j.jep.2011.05.024
  7. Lim SH, Park YH, Kwon CJ, Ham HJ, Jeong HN, Kim KH, Ahn YS. Anti-diabetic and Hypoglycemic Effect of Eleutherococcus spp.. Journal of the Korean Society of Food Science and Nutrition. The Korean Society of Food Science and Nutrition. 2010;29:1761-1768. doi : 10.3746/jkfn.2010.39.12.1761
  8. Zhang N, Van Crombruggen K, Holtappels G, Bachert C. A herbal composition of Scutellaria baicalensis and Eleutherococcus senticosus shows potent anti-inflammatory effects in an ex vivo human mucosal tissue model. Evidence-based complementary and alternative medicine. 2012:673145. doi: 10.1155/2012/673145
  9. Heo SJ, Ahn HY, Kang MJ, Lee JH, Cha JY, Cho YS. Antioxidative Activity and Chemical Characteristics of Leaves, Roots, Stems and Fruits Extracts from Acanthopanax senticosus. Journal of Life Science. 2011;21:1052-1059. doi: 10.5352/JLS.2011.21.7.1052
  10. Professors of Herbology in Korea. Herbology. Seoul. Younglim Press. 2020:723.
  11. Han JS, Eleutherococcus senticosus cultivation technology. 2002 July 26 [cited 2023 May 15]; Available form : URL : https://www.ares.gangwon.kr/gwares/know_how/research/cultivation?articleSeq=32533
  12. Yoon KR, Kim YJ, Lee E, Lee JM. Anti-inflammatory Effect of Coptidis Rhizoma. The Korea Journal of Herbology. 2009;24(3):79-86. doi: 10.6116/KJH.2009.24.3.079
  13. Kim MJ, Wang HS, Lee MW. Anti-Inflammatory Effects of Fermented Bark of Acanthopanax sessiliflorus and Its Isolated Compounds on Lipopolysaccharide-Treated RAW 264.7 Macrophage Cells. Evidence-based complementary and alternative medicine. 2020:6749425. doi: 10.1155/2020/6749425
  14. Park JH, Lee HS, Mun HC, Kim DH, Seong NS, Jung HG, Bang JK, Lee HY. Improvement of Anticancer Activation of Ultrasonificated Extracts from Acanthopanax senticosus Harms, Ephedra sinica Stapf, Rubus coreanus Miq. and Artemisia capillaris Thunb. Korean Journal of Medicinal Crop Science. 2004;12:273-278.
  15. Ortega-Gomez A, Perretti M, Soehnlein O. Resolution of inflammation: an integrated view. EMBO Molecular Medicine. 2013;5:661-674. https://doi.org/10.1002/emmm.201202382
  16. Drenjancevic I, Jukic I, Mihaljevic Z, Matic A and Kibel A. The Metabolites of Arachidonic Acid in Microvascular Function. Microcirculation Revisited - From Molecules to Clinical Practice. IntechOpen. 2016.
  17. Xu M, Wang X, Li Y, Geng X, Jia X, Zhang L, Yang H. Arachidonic Acid Metabolism Controls Macrophage Alternative Activation Through Regulating Oxidative Phosphorylation in PPARγ Dependent Manner. Frontiers in Immunology. 2021;12:618501. doi: 10.3389/fimmu.2021.618501
  18. Seymour RM, Henderson B. Pro-inflammatory-anti-inflammatory cytokine dynamics mediated by cytokine-receptor dynamics in monocytes. Mathematical Medicine and Biology: A Journal of the IMA. 2001;18:159-192. doi: 10.1093/imammb/18.2.159
  19. Eliopoulos AG, Dumitru CD, Wang CC, Cho J, Tsichlis PN. Induction of COX-2 by LPS in macrophages is regulated by Tpl2-dependent CREB activation signals. The EMBO Journal. 2002;21:4831-40. doi: 10.1093/emboj/cdf478
  20. Williams JA, Shacter E. Regulation of macrophage cytokine production by prostaglandin E2. Distinct roles of cyclooxygenase-1 and -2. Journal of Biological Chemistry. 1997;272:25693-9. doi: 10.1074/jbc.272.41.25693
  21. Liu X, Yin S, Chen Y, Wu Y, Zheng W, Dong H, Bai Y, Qin Y, Li J, Feng S, Zhao P. LPS-induced proinflammatory cytokine expression in human airway epithelial cells and macrophages via NF-κB, STAT3 or AP-1 activation. Molecular Medicine Reports. 2018; 17:5484-5491. doi: 10.3892/mmr.2018.8542
  22. Tsatsanis C, Zacharioudaki V, Androulidaki A, Dermitzaki E, Charalampopoulos I, Minas V, Gravanis A, Margioris AN. Adiponectin induces TNF-alpha and IL-6 in macrophages and promotes tolerance to itself and other pro-inflammatory stimuli. Biochemical and Biophysical Research Communications. 2015;335:1254-63. doi: 10.1016/j.bbrc.2005.07.197
  23. Filgueira L, Larionov A, Lannes N. The Influence of Virus Infection on Microglia and Accelerated Brain Aging. Cells. 2021;10:1836. doi: 10.3390/cells10071836
  24. Jung HK, Kang BM, Jang JH, Ahn BK, Yeo JH, Jung WS, Cho JH, Kuk YI, Hyun KH, Cho HW. Inhibitory Effect of Alopecurus aequalis Sobol Ethanol Extracts on LPS-induced Inflammatory Response in RAW 264.7 Cells. Korean Journal of Medicinal Crop Science. 2014;22:98-104. doi: 10.7783/KJMCS.2014.22.2.98
  25. Kirkham P. Oxidative stress and macrophage function: a failure to resolve the inflammatory response. Biochem Soc Trans. 2007;35:284-7. doi: 10.1042/BST0350284
  26. Debprasad C, Hemanta M, Paromita B, Durbadal O, Kumar KA, Shanta D, Kumar HP, Tapan C, Ashoke S, Sekhar C. Inhibition of NO2, PGE2, TNF-α, and iNOS Expression by Shorea robusta L.: An Ethnomedicine Used for Anti-Inflammatory and Analgesic Activity. Evidence-Based Complementary and Alternative Medicine. 2012;254849. doi: 10.1155/2012/254849
  27. Nastasi C, Mannarino L, D'Incalci M. DNA Damage Response and Immune Defense. International Journal of Molecular Sciences. 2020;21:7504. doi: 10.3390/ijms21207504.
  28. Abdullah M, Jamil RT, Attia FN. Vitamin C (Ascorbic Acid). 2022 [cited 2023 May 15]; Available form : URL : https://www.ncbi.nlm.nih.gov/books/NBK499877/
  29. Jayalakshmi CP, Sharma JD. Effect of butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) on rat erythrocytes. Environ Res. 1986;41:235-8. doi: 10.1016/S0013-9351(86)80185-2
  30. Maliakel DM, Kagiya TV, Nair CK. Prevention of cisplatin-induced nephrotoxicity by glucosides of ascorbic acid and alpha-tocopherol. Exp Toxicol Pathol. 2008;60:521-7. doi: 10.1016/j.etp.2008.04.015
  31. Williams GM, Iatropoulos MJ, Whysner J. Safety assessment of butylated hydroxyanisole and butylated hydroxytoluene as antioxidant food additives. Food and Chemical Toxicology. 1999; 37:1027-38. doi: 10.1016/s0278-6915(99)00085-x
  32. Yoo NH, Kim HK, Lee CO, Park JH, Kim MJ. Comparison of Anti-oxidant and Anti-inflammatory Activities of Methanolic Extracts Obtained from Different Parts of Cotoneaster wilsonii Nakai. Korean Journal of Medicinal Crop Science. 2019;27:194-201. doi: 10.7783/KJMCS.2019.27.3.194
  33. Lin QY, Jin LJ, Cao ZH, Xu YP. Inhibition of inducible nitric oxide synthase by Acanthopanax senticosus extract in RAW264.7 macrophages. J Ethnopharmacology. 2008;118(2):231-236. doi: 10.1016/j.jep.2008.04.003
  34. Yoon TK, Jo SY. Effect of Acanthopanax senticosus Extracts on Alcohol Degradation and Anti-Inflammatory Activity in Mice. The Korean Journal of Food And Nutrition. 2010; 23(4), 542-548.
  35. Kumar P, Nagarajan A, Uchil PD. Analysis of Cell Viability by the MTT Assay. Cold Spring Harbor protocols. 2018(6):10. doi: 10.1101/pdb.prot095505
  36. Kabakov AE, Gabai VL. Cell Death and Survival Assays. Methods in molecular biology (Clifton, N.J.). 2018;1709:107-127. doi: 10.1007/978-1-4939-7477-1_9
  37. Lin QY, Jin LJ, Cao ZH, Xu YP. Inhibition of inducible nitric oxide synthase by Acanthopanax senticosus extract in RAW264.7 macrophages. J Ethnopharmacology. 2008;118(2):231-236. https://doi.org/10.1016/j.jep.2008.04.003
  38. Lin QY, Jin LJ, Ma YS, Shi M, Xu YP. Acanthopanax senticosus inhibits nitric oxide production in murine macrophages in vitro and in vivo. Phytotherapy research. 2007;21(9):879-883. doi: 10.1002/ptr.2171
  39. Liu S, Chen Y, Gu L, Li Y, Wang B, Hao J, Kitanaka S, Li H. Purification of eleutherosides by macroporous resin and the active fractions of anti-inflammatory and antioxidant activity from Acanthopanax senticosus extract. Analytical Methods. 2013;5(15):3732-40. doi: 10.1039/C3AY40164B
  40. Lee SH, Oh HY, Leem JY, Yoon S. Antioxidant and NO-scavenging Activities of Acanthopanax senticosus var. subinermis Leaf Extracts Prepared Using Ethanol and Extrusion Processing. Food Science and Biotechnology. 2009;18.5:1124-1131.
  41. Stern AM, Zhu J. An introduction to nitric oxide sensing and response in bacteria. Advances in applied microbiology. 2014;87:187-220. doi: 10.1016/B978-0-12-800261-2.00005-0
  42. Eliopoulos AG, Dumitru CD, Wang CC, Cho J, Tsichlis PN. Induction of COX-2 by LPS in macrophages is regulated by Tpl2-dependent CREB activation signals. The EMBO Journal. 2002;21:4831-40. doi: 10.1093/emboj/cdf478