
Barrett’s esophagus is associated with an increased risk of adenocarcinoma. Thorough screening during endoscopic surveillance is cru-
cial to improve patient prognosis. Detecting and characterizing dysplastic or neoplastic Barrett’s esophagus during routine endoscopy 
are challenging, even for expert endoscopists. Artificial intelligence-based clinical decision support systems have been developed to 
provide additional assistance to physicians performing diagnostic and therapeutic gastrointestinal endoscopy. In this article, we review 
the current role of artificial intelligence in the management of Barrett’s esophagus and elaborate on potential artificial intelligence in 
the future. 
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INTRODUCTION 

Gastroesophageal reflux disease, family history, age, or sex pre-
disposes to Barrett’s esophagus (BE), a complication in which 
stratified esophageal squamous epithelium at the level of the 
gastroesophageal junction is replaced by metaplastic columnar 
epithelium.1,2 BE is a precursor to esophageal adenocarcinoma 
(EAC).3 The incidence of EAC has increased significantly in 
recent years4,5 and is often associated with poor prognosis due 
to delayed diagnosis.3 Risk factors for the progression of BE to 
dysplastic BE or EAC include the length of the BE segment, age, 
ethnicity, lifestyle, and medication.6,7 

The gold standard for diagnosing BE and Barrett’s esopha-
gus-related neoplasia (BERN) is endoscopic evaluation with 

histological confirmation. However, differentiating between 
non-dysplastic BE and BERN can be challenging, even for ex-
pert endoscopists. Existing biopsy strategies are suboptimal, 
with EAC and BE miss rates of >20% and 50%, respectively.8,9 
This is partly attributable to poor compliance with existing 
biopsy protocols and the complexity of differentiation between 
non-dysplastic BE and BERN during endoscopic evaluation.8,9 
Using imaging techniques such as narrow band imaging (NBI) 
with standardized classification systems for BE and BERN can 
help improve the diagnostic performance of endoscopists.10,11 

Additionally, advanced imaging techniques such as chromo-
endoscopy with indigo carmine or acetic acid are valuable 
options and are recommended for high-quality assessment of 
BE (Fig. 1).11-14 However, implementation of advanced imaging 
techniques in daily practice requires extensive experience. Re-
cently, several research groups have developed deep learning 
algorithms to improve the detection and characterization of 
BERN. 

CURRENT STATUS 

Artificial intelligence: a brief introduction 
Time constraints and cost issues have led to the search for more 
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efficient modalities for diagnosis and treatment of patients. To 
this end, artificial intelligence (AI) has become increasingly rel-
evant to the field of medicine, especially for the early diagnosis 
of neoplasia. AI is an umbrella term for a wide range of topics, 
and the general idea is to solve problems using algorithms that 
require characteristics similar to human intelligence, such as 
the ability to learn. Machine learning (ML), as a subdiscipline 
of AI, describes algorithms employed to learn from pre-existing 
data. The field of AI most relevant to medicine, particularly 
endoscopy, is deep learning. Deep learning is a subtype of ML 
and describes a method that aims to solve defined problems 
with little to no supervision using vast amounts of data. Similar 
to the human brain, the applied algorithms or convolutional 
neural networks (CNNs) consist of numerous layers of neurons. 
CNNs learn to recognize certain patterns within the provided 
input data and produce a prediction or output.15 For example, 
in gastrointestinal (GI) endoscopy, the output could predict the 
dignity of an observed lesion and differentiate between neo-

plasia and non-neoplasia. This task is called computer-aided 
diagnosis (CADx). Meanwhile, identifying the lesion of interest 
is called computer-aided detection (CADe).16 One way to quan-
tify the accuracy of an AI system during CADe is to determine 
the intersection over union (IOU). It compares the ground 
truth represented by a box with the output of the AI algorithm 
represented by a bounding box. IOU is the result of the division 
of the “area of overlap” by the “area of union”.17 Another way to 
quantify the accuracy of object detection is the Dice coefficient 
(or Sørensen-Dice coefficient), which is calculated by dividing 
the area of union by the total number of pixels in the individual 
areas.18 

Relevance of AI for diagnostic purposes in Barrett’s esoph-
agus 
Detecting high-grade dysplasia (HGD) and EAC during endos-
copy is difficult and challenging. Considering the consequences 
of false negative results or missed lesions a “second opinion” 

Fig. 1. Images of Barrett’s esophagus-related neoplasia during endoscopy with an Olympus Evis X1 system (Olympus, Tokyo, Japan) in 
high-definition white light endoscopy (A), narrow band imaging (B), acetic acid chromoendoscopy (C), and chromoendoscopy with indigo 
carmine (D).
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during endoscopic examination is an appealing thought. 
van der Sommen et al.19 developed a pattern recognition-based 

AI system that could detect EAC on images of BE with a sensi-
tivity and specificity of >80%. de Groof et al.20 developed an AI 
system based on a CNN that outperformed general endosco-
pists during an image-based trial with a sensitivity of 93% and 
specificity of 72%, compared to endoscopists with a sensitivity 
of 88% and specificity of 73%. In a follow-up study, the same 
group achieved a sensitivity, specificity, and accuracy of 91%, 

89%, and 90%, respectively, in the differentiation between BE 
and BERN on high-definition white light endoscopy (HD-
WLE) images.21 Similarly, several other groups have successful-
ly differentiated BE from BERN during image-based studies. 
Hashimoto et al.22 managed to classify BE correctly with a sen-
sitivity, specificity, and accuracy of 96.4%, 94.2%, and 95.4%, 
respectively. Furthermore, they managed to detect with an IOU 
of 0.3 and a mean average precision of 0.75. Iwagami et al.23 fo-
cused on an Asian population and developed an AI system that 

AA

BB CC

Fig. 2. Detection and characterization of Barrett’s esophagus-related neoplasia during endoscopy with Olympus Evis X1 system using an AI 
system developed by the University Hospital of Augsburg and Ostbayerische Technische Hochschule Regensburg (OTH-Regensburg) with 
classification and segmentation in narrow band imaging (A), texture and color enhancement imaging (B) and high-definition white light en-
doscopy (C). The corresponding heatmaps are available at the top left corner of the user interface.
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detects cancer at the esophagogastric junction with a sensitivity, 
specificity, and accuracy of 94%, 42%, and 66%, respectively. 
This study was conducted using 232 HD-WLE still images of 
36 cancer and 43 non-cancer cases. The performance was com-
pared to that of experts with a sensitivity, specificity, and accu-
racy of 88%, 43%, and 63%, respectively. 

Ghatwary et al.24 compared the different methods used for 
the CNN-based development of CADe. On 100 HD-WLE still 
images, the single-shot multibox detector performed better 
(sensitivity, specificity, and F-score: 96%, 92%, and 0.94, respec-
tively) than other region-based CNNs. 

Struyvenberg et al.25 developed an AI system that could clas-
sify BE and BERN using NBI with a sensitivity, specificity, and 
accuracy of 88%, 78%, and 84%, respectively. Hussein et al.26 
trained their CNN with BE and BERN images in HD-WLE and 
optical chromoendoscopy (i-scan from Pentax Hoya, Tokyo, 
Japan). They achieved a sensitivity, specificity, and area under 
the receiver operator curve of 91%, 79%, and 93%, respectively, 
during a classification task. In the same study, their CNN had 
an average Dice score of 50% during the segmentation task.26 

Ebigbo et al.27 used HD-WLE images, NBI images, and 
texture and color enhancement imaging for training a CNN. 
Hence, they can offer multimodal CADe and CADx with 
promising results. Initial studies based on still images with HD-
WLE—images from the data of the Medical Image Computing 
and Computer Assisted Interventions Society demonstrated 
a sensitivity and specificity of 92% and 100%, respectively. 
In a study with an independent data set from the University 
Hospital of Augsburg, these results could be reproduced using 
HD-WLE images (sensitivity/specificity of 97%/88%) and NBI 
images (sensitivity/specificity of 94%/80%). Subsequently, the 
algorithm demonstrated its potential for real-life applications. 
The AI system captured images randomly off an endoscopic 
live stream and differentiated BE from EAC with an accuracy of 
89.9%.28  

During the early phase of this research field, even though 
several AI systems were able to demonstrate promising results 
in preclinical and pilot-phase clinical studies, AI algorithms 
were mostly only able to offer a per-image evaluation of BE and 
BERN. Ebigbo et al.29 were one of the first research groups to 
differentiate BE from BERN in 3 different imaging modalities 
in real time (Fig. 2). 

Differentiating between T1a and T1b lesions during endo-
scopic examination is extremely difficult. Ebigbo et al.30 devel-
oped an algorithm that was able to differentiate T1a from T1b 

adenocarcinoma in an image-based pilot study on 230 HD-
WLE images with a sensitivity, specificity, F1-score, and accura-
cy of 77%, 64%, 74%, and 71%, respectively. This performance 
was comparable to that of expert endoscopists. A meta-analysis 
that included 6 studies with 561 endoscopic images of patients 
with BE was published by Lui et al.31 Three studies used CNN 
as the backbone, whereas 3 used a non-CNN backbone. Over-
all, pooled sensitivity and specificity were approximately 86% to 
88% and 86% to 90% respectively, demonstrating the promising 
potential of AI systems for detecting neoplastic lesions in BE.31 
Nevertheless, although a meta-analysis generally incorporates 
data from different trials, comparing AI studies in the preclini-
cal phase is particularly difficult because of the heterogeneity of 
data samples and the algorithms used for the various trials. This 
meta-analysis was published in 2020, and since then, more data 
have emerged on this topic. 

Volumetric laser endomicroscopy (VLE) is an advanced im-
aging method that applies the principles of optical coherence 
tomography.32 In an observational study conducted by Smith 
et al.,33 VLE-guided biopsy improved, compared to random 
biopsies, the detection of BERN by 700% in cases where with 
other imaging methods no visual cues for neoplasia had been 
detected. However, the application of VLE and the interpreta-
tion of acquired information require practice and experience. 
Therefore, several research groups have attempted to address 
this problem using AI. Trindade et al.34 were one of the first to 
develop an AI system that could detect and demarcate previ-
ously determined characteristics of dysplasia on VLE images. 
In a case report of a patient with long-segment BE with no 
visual cues on HD-WLE or NBI and negative random biopsies, 
VLE-guided histological acquisition demonstrated focal low-
grade dysplasia. Struyvenberg et al.35 developed an AI system 
with a sensitivity of 91% and specificity of 82% compared to 
VLE experts with a pooled sensitivity and specificity of 70% 
and 81%, respectively. 

During a pilot clinical study with a manufactured spectral 
endoscope, Waterhouse et al.36 tested an AI system that could 
differentiate the spectra of BE from those of BERN with a sensi-
tivity of 83.7% and a specificity of 85.5%. 

Beyond preclinical and pilot phase clinical trials, several AI 
systems have already been approved for clinical use and are 
now commercially available. WISE VISION (NEC Corp, Tokyo, 
Japan) was developed and can differentiate between BE and 
BERN, and offers a visual representation of the area that has 
been classified as HGD or neoplastic. AI system was developed 
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(CADU, Odin Medical Ltd, London, UK) that can differentiate 
BE from BERN and offers a visual representation when the ob-
served image is deemed dysplastic. 

As more researchers are currently in the preclinical phase 
or on the verge of clinical trials, a standardized way to ensure 
minimum requirements during the development process and 
later in terms of performance is urgently needed. The American 
Society for Gastrointestinal Endoscopy developed a guideline, 
the Preservation and Incorporation of Valuable Endoscopic 
Innovations, for the integration of new imaging technology in 
the context of BE. For technologies that intend to replace ran-
dom biopsies with targeted biopsies, a minimum performance 
of 90% sensitivity, 98% negative predictive value, and 80% 
specificity for HGD or EAC is recommended.37 In addition to 
standardized threshold performance requirements, guidelines 
that ensure quality standards during the developmental process 
of AI systems are urgently needed (Table 1).19-23,25-28,30,35,36   

Computer-aided quality control of upper gastrointestinal 
endoscopy  
AI has the potential to improve various aspects of GI endosco-
py such as inter-examiner variability. For example, Pan et al.38 

developed an AI system that automatically identifies the squa-
mous-columnar junction and gastroesophageal junction on 
images. Ali et al.39 worked on an AI system that automatically 
determined the extension of the BE according to the Prague 
classification. With the extension of BE as a relevant factor for 
risk stratification, AI-assisted standardized and automated re-
porting has the potential to significantly improve patient care. 

Additionally, a complete examination with thorough inspec-
tion is crucial to avoid missed lesions. The European Society of 
Gastrointestinal Endoscopy and British Society of Gastroenter-
ology recommend photo documentation of specific landmarks 
during upper GI endoscopy.40,41 According to the European 
Society of Gastrointestinal Endoscopy, a photo documentation 
rate of ≥90% is recommended to meet the minimum quality re-
quirements for upper GI endoscopy.41 Incomplete examinations 
during upper GI endoscopy can lead to an increased cancer 
miss rate. AI applications have the potential to provide imme-
diate feedback on the quality of endoscopic examinations. Wu 
et al.42 developed an AI system, WISENSE, that can detect blind 
spots, document examination time, and automatically record 
images for photo documentation during the procedure. A ran-
domized controlled trial compared upper GI endoscopy with 
or without the support of WISENSE and demonstrated a lower 
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blind spot rate in the group that received support from the AI 
system (Table 2).38,39,42 

Limitations 
Despite currently several research teams being on the verge 
of clinical studies and real-life applications, their good results 
from preclinical studies are often limited to data from their 
own centers. This is particularly relevant when AI systems are 
commercially available and used at different centers. More-
over, during development, a heterogeneous set of data with 
not only a tremendous number of frames but also a sufficient 
number of different cases is important for the robustness of an 
AI system. 

Furthermore, to date, no standardized method for evaluating 
the performance of an AI system has been created, thus indicat-
ing an urgent need to establish standardized evaluation meth-
ods. This also includes uniform terminology when describing 
the methods and results of the respective studies. 

CONCLUSIONS 

Modern medicine, with its ever-growing complexity coupled 
with limited human and material resources, is urgently needed 
for more efficient workflow while maintaining a high level of 
patient care. AI may help to solve some of these problems. Cur-
rent AI applications are not being developed to replace human 
physicians but to support physicians during complex diagnostic 
and therapeutic processes. Correct interpretation of the addi-
tional information provided by AI systems is crucial for optimal 
performance. Human-computer interaction should be a focus 
during the development of AI systems as the performance is. 
Creating AI systems that seamlessly integrate themselves into 
the daily routine of examiners is important. Furthermore, of-
fering feedback on the confidence of an AI system in its current 
prediction is crucial. AI systems are only as good as the data in-
put they receive, and low-quality data result in lower diagnostic 
performance. Although most AI systems for BE and BERN are 
still in the initial and preclinical phases, the immense potential 

of AI in routine clinical practice is evident. In the future, AI will 
optimize endoscopic practice and improve long-term patient 
outcomes. 
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