DOI QR코드

DOI QR Code

The Effect of Interleaved-practice by the Discriminative-contrast hypothesis in Mathematics

수학학습에서 구분-대조 가설에 의한 교차연습의 효과

  • Received : 2023.05.09
  • Accepted : 2023.06.26
  • Published : 2023.06.30

Abstract

The purpose of this study is to find out whether there is a difference in achievement between blocked practice and interleaved practice according to the difference in domain and type of learning content in mathematics subject, and through this result, it is to confirm whether the effect of interleaved practice in mathematics learning is due to the 'Discriminative-contrast Hypothesis' or the 'Distributed-practice Hypothesis'. Although interleaved practice is more effective than blocked practice, previous studies have not shown consistent results regarding the cause. Therefore, in this study, 103 first-year middle school students were randomly assigned to blocked practice, interleaved practice, remote blocked practice, and remote interleaved practice groups had learning activities over 4 times. The results reveals that the effect of interleaved practice appeared in similar types in the same domain, but the effect of interleaved practice did not appear in different types in different domain. In addition, through this result, it was confirmed that the effect of interleaved practice was due to the 'Discriminative-contrast hypothesis' rather than the 'Distributed-practice hypothesis'. Further research topics were suggested after the issues on the research method and the findings were discussed.

본 연구의 목적은 수학교과에서 학습하는 내용이 영역과 유형의 차이에 따라 구획연습과 교차연습의 성취도 차이가 나는지 알아보고 이 결과를 통해 수학학습에서의 교차연습의 효과가 '분산-연습 가설'에 의한 것인지 혹은 '구분-대조 가설'에 의한 것인지를 확인하는 것이다. 교차연습이 구획연습보다 효과적이라는 연구가 대부분이지만 그 원인에 대해서 선행 연구들은 일관된 결과를 보이고 있지 않다. 이에 본 연구에서는 D광역시 중학교 1학년 103명을 구획연습, 교차연습, 먼-구획연습, 먼-교차연습 집단으로 무작위 배치하여 4회에 걸쳐 학습활동을 하였고 일주일의 파지간격을 둔 후 최종검사를 실시하였다. 그 결과, 동일한 영역에서의 유사한 유형에서는 교차연습의 효과가 나타났고, 서로 다른 영역의 다른 유형에서는 교차연습의 효과가 나타나지 않았다. 또한, 이 결과를 통해 교차연습의 효과는 '분산-연습 가설'보다는 '구분-대조 가설'에 의한 것임을 확인할 수 있었다. 연구결과와 연구방법에 대한 논의를 통해 후속 연구가 필요한 연구문제를 제안하였다.

Keywords

References

  1. Ministry of Education (2019a). Mathematics 5-1. Chunjae Education. 
  2. Ministry of Education (2019b). Mathematics 5-2. Chunjae Education. 
  3. Ministry of Education (2019c). Mathematics 6-1. Chunjae Education. 
  4. Ministry of Education (2019d). Mathematics 6-2. Chunjae Education. 
  5. Ministry of Education (2019e). Mathematics workbook 5-1. Chunjae Education. 
  6. Ministry of Education (2019f). Mathematics workbook 5-2. Chunjae Education. 
  7. Ministry of Education (2019g). Mathematics workbook 6-1. Chunjae Education. 
  8. Ministry of Education (2019h). Mathematics workbook 6-2. Chunjae Education. 
  9. Ministry of Education (2022.10.11.). The 1st comprehensive plan for basic academic skills guarantee. Ministry of Education. 
  10. Lan, A. D, & Lee. H. S. (2020). Why they chose What they chose: Exploring effects of test performance and metacognitive judgments on learners' selection of interleaving schedule. Korean Journal of Cognitive and Biological Psychology, 32(2), 169-188.  https://doi.org/10.22172/COGBIO.2020.32.2.004
  11. Ryu, J. M., & Kang, E. C. (2021). Interaction effect of retrieval practice methods and math achievement levels in math learning. The Journal of Thinking Development, 17(2), 23-42. 
  12. Pang, J. S., Kim, L. N., & Kim, S. H. (2022). A comparative analysis of introducing addition and subtraction in the Korean, Singaporean, American, and Japanese elementary textbooks. Communication of Mathematics Education, 36(2), 229-252. 
  13. Shin, H. Y., & Park, S. Y. (2023). Possibilities and limitations of basic academic skills support policy : Focusing on the 1st comprehensive plan for basic academic skills guarantee. The Journal of Politics of Education, 30(1), 1-30.  https://doi.org/10.52183/KSPE.2023.30.1.1
  14. Bjork, R. A., & Bjork, E. L. (2020). Desirable difficulties in theory and practice. Journal of Applied Research in Memory and Cognition, 9(4), 475-479.  https://doi.org/10.1016/j.jarmac.2020.09.003
  15. Brown, P. C., Roediger, H. L. III, & McDaniel, M. A. (2014). Make it stick: The science of successful learning. Belknap Press of Harvard University Press. 
  16. Carvalho, P. F., & Goldstone, R. L. (2014a). Effects of interleaved and blocked study on delayed test of category learning generalization. Frontiers in Psychology, 5, Article 936. 
  17. Carvalho, P. F., & Goldstone, R. L. (2014b). Putting category learning in order: Category structure and temporal arrangement affect the benefit of interleaved over blocked study. Memory & cognition, 42, 481-495.  https://doi.org/10.3758/s13421-013-0371-0
  18. Carvalho, P. F., & Goldstone, R. L. (2015a). The benefits of interleaved and blocked study: Different tasks benefit from different schedules of study. Psychonomic Bulletin and Review, 22(1), 281-288.  https://doi.org/10.3758/s13423-014-0676-4
  19. Carvalho, P. F., & Goldstone, R. L. (2015b). What you learn is more than what you see: What can sequencing effects tell us about inductive category learning?. Frontiers in Psychology, 6(505), 1-12.  https://doi.org/10.3389/fpsyg.2015.00505
  20. Carvalho, P. F., & Goldstone, R. L. (2017). The sequence of study changes what information is attended to, encoded, and remembered during category learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(11), 1699-1719.  https://doi.org/10.1037/xlm0000406
  21. Carvalho, P. F., & Goldstone, R. L. (2019). When does interleaving practice improve learning? In J. Dunlosky & K. A. Rawson (Eds.), Cambridge handbook of cognition and education (pp. 411-436). Cambridge University Press. 
  22. Cervin-Ellqvist, M., Larsson, D., Adawi, T., Stohr, C., & Negretti, R. (2021). Metacognitive illusion or self-regulated learning? Assessing engineering students' learning strategies against the backdrop of recent advances in cognitive science. Higher Education, 82(3), 477-498.  https://doi.org/10.1007/s10734-020-00635-x
  23. Digirolamo, G. J., & Hintzman, D. L. (1997). First impressions are lasting impressions: A primacy effect in memory for repetitions. Psychonomic Bulletin & Review, 4(1), 121-124.  https://doi.org/10.3758/BF03210784
  24. Dunlosky, J., Rawson, K. A., Marsh, E. J., Nathan, M. J., & Willingham, D. T. (2013). Improving students' learning with effective learning techniques: Promising directions from cognitive and educational psychology. Psychological Science in the Public Interest, 14(1), 4-58.  https://doi.org/10.1177/1529100612453266
  25. Foster, N. L., Mueller, M. L., Was, C., Rawson, K. A., & Dunlosky, J. (2019). Why does interleaving improve math learning? : The contributions of discriminative contrast and distributed practice. Memory and Cognition, 47(6), 1088-1101.  https://doi.org/10.3758/s13421-019-00918-4
  26. Gleddie, A. (2021). The effects of iInterleaving on mathematical understanding. University of Alberta Libraries. https://doi.org/10.7939/r3-0amm-7287 
  27. Kang, S. H. (2016a). Spaced repetition promotes efficient and effective learning: Policy implications for instruction. Policy Insights from the Behavioral and Brain Sciences, 3(1), 12-19.  https://doi.org/10.1177/2372732215624708
  28. Kang, S. H. (2016b). The benefits of interleaved practice for learning. In J. C. Horvath, J. Lodge, & J. A. C. Hattie (Eds.), From the laboratory to the classroom (pp. 79-90). Routledge. 
  29. Kang, S. H., & Pashler, H. (2012). Learning painting styles: Spacing is advantageous when it promotes discriminative contrast. Applied Cognitive Psychology, 26(1), 97-103.  https://doi.org/10.1002/acp.1801
  30. Kost, A. S., Carvalho, P. F., & Goldstone, R. L. (2015). Can you repeat that? The effect of item repetition on interleaved and blocked study. In D. C. Noelle, R. Dale, A. S. Warlaumont, J. Yoshimi, T. Matlock, C. D. Jennings, & P. P. Maglio (eds.), Proceedings of the 37th annual meeting of the Cognitive Science Society (pp. 1189-1194). Cognitive Science Society. 
  31. Le Blanc, K., & Simon, D. (2008). Mixed practice enhances retention and JOL accuracy for mathematical skills. Paper presented at the 49th Annual Meeting of the Psychonomic Society, Chicago, IL. November, 2008. 
  32. Lu, X., Penney, T. B., & Kang, S. H. (2021). Category similarity affects study choices in self-regulated learning. Memory & Cognition, 49, 67-82.  https://doi.org/10.3758/s13421-020-01074-w
  33. Mayfield, K. H., & Chase, P. N. (2002). The effects of cumulative practice on mathematics problem solving. Journal of Applied Behavior Analysis, 35(2), 105-123.  https://doi.org/10.1901/jaba.2002.35-105
  34. Rau, M. A., Aleven, V., & Rummel, N. (2013). Interleaved practice in multi-dimensional learning tasks: Which dimension should we interleave? Learning and Instruction, 23, 98-114.  https://doi.org/10.1016/j.learninstruc.2012.07.003
  35. Roediger III, H. L., & Karpicke, J. D. (2006). The power of testing memory: Basic research and implications for educational practice. Perspectives on Psychological Science, 1(3), 181-210.  https://doi.org/10.1111/j.1745-6916.2006.00012.x
  36. Rohrer, D. (2009). Research commentary: The effects of spacing and mixing practice problems. Journal for Research in Mathematics Education, 40(1), 4-17.  https://doi.org/10.5951/jresematheduc.40.1.0004
  37. Rohrer, D. (2012). Interleaving helps students distinguish among similar concepts. Educational Psychology Review, 24(3), 355-367.  https://doi.org/10.1007/s10648-012-9201-3
  38. Rohrer, D., Dedrick, R. F., & Burgess, K. (2014). The benefit of interleaved mathematics practice is not limited to superficially similar kinds of problems. Psychonomic Bulletin & Review, 21(5), 1323-1330.  https://doi.org/10.3758/s13423-014-0588-3
  39. Rohrer, D., Dedrick, R. F., Hartwig, M. K., & Cheung, C. N. (2020). A randomized controlled trial of interleaved mathematics practice. Journal of Educational Psychology, 112(1), 40-52.  https://doi.org/10.1037/edu0000367
  40. Rohrer, D., Dedrick, R. F., & Stershic, S. (2015). Interleaved practice improves mathematics learning. Journal of Educational Psychology, 107(3), 900-908.  https://doi.org/10.1037/edu0000001
  41. Rohrer, D., & Hartwig, M. K. (2020). Unanswered questions about spaced and interleaved mathematics practice. Journal of Applied Research in Memory and Cognition, 9, 433-438.  https://doi.org/10.1016/j.jarmac.2020.06.008
  42. Rohrer, D., & Taylor, K. (2007). The shuffling of mathematics problems improves learning. Instructional Science, 35(6), 481-498.  https://doi.org/10.1007/s11251-007-9015-8
  43. Sana, F., Yan, V. X., & Kim, J. A. (2017). Study sequence matters for the inductive learning of cognitive concepts. Journal of Educational Psychology, 109(1), 84-98.  https://doi.org/10.1037/edu0000119
  44. Taylor, K., & Rohrer, D. (2010). The effects of interleaved practice. Applied Cognitive Psychology, 24(6), 837-848.  https://doi.org/10.1002/acp.1598
  45. Wahlheim, C. N., Dunlosky, J., & Jacoby, L. L. (2011). Spacing enhances the learning of natural concepts: An investigation of mechanisms, metacognition, and aging. Memory and Cognition, 39(5), 750-763.  https://doi.org/10.3758/s13421-010-0063-y
  46. Warshauer, H. K. (2015). Strategies to support productive struggle. Mathematics Teaching in the Middle School, 20(7), pp. 390-393.  https://doi.org/10.5951/mathteacmiddscho.20.7.0390
  47. Watkins, O. C., & Watkins, M. J. (1975). Buildup of proactive inhibition as a cue-overload effect. J ournal of Experimental Psychology: Human Learning and Memory, 104, 442-452.  https://doi.org/10.1037/0278-7393.1.4.442
  48. Weltman, H. R., Timchenko, V., Sofios, H. E., Ayres, P., & Marcus, N. (2019). Evaluation of an adaptive tutorial supporting the teaching of mathematics. European Journal of Engineering Education, 44(5), 787-804.  https://doi.org/10.1080/03043797.2018.1513993