DOI QR코드

DOI QR Code

Micro-scale dependent static stress and strain analyses of thickness-stretching micro plate in sport application

  • Mingjun Xia (School of Physical Education, Changchun Normal University)
  • 투고 : 2022.06.02
  • 심사 : 2023.06.13
  • 발행 : 2023.05.25

초록

Aim of this work is investigating effect of thickness-stretching formulation on the quasi three-dimensional analysis of micro plate based on a thickness-stretched and shear deformable model through principle of virtual work and micro-scale dependent constitutive relations. Governing differential equations are derived in terms of five unknown functions and the analytical solution is derived using Navier's technique. To explore effect of thickness stretching model on the static results, a comparison between the results with and without thickness stretching effect is presented.

키워드

과제정보

This study was supported by "Research on Performance Evaluation System of Jilin Provincial Government Purchasing Public Sports Service Supply Chain" (2018B140) affiliated to Social Science Fund Project of Jilin Province.

참고문헌

  1. Abbas, S.Z., Waqas, M., Thaljaoui, A., Zubair, M., Riahi, A., Chu, Y.M. and Khan, W.A. (2022), "Modeling and analysis of unsteady second-grade nanofluid flow subject to mixed convection and thermal radiation", Soft. Comput., 26(3), 1033-1042. https://doi.org/10.1007/s00500-021-06575-7
  2. Adab, N. and Arefi, M. (2022), "Vibrational behavior of truncated conical porous GPL-reinforced sandwich micro/nano-shells", Eng. Comput. https://doi.org/10.1007/s00366-021-01580-8
  3. Adab, N., Arefi, M. and Amabili, M. (2022), "A comprehensive vibration analysis of rotating truncated sandwich conical microshells including porous core and GPL-reinforced face-sheets", Compos. Struct., 279, 114761. https://doi.org/10.1016/j.compstruct.2021.114761
  4. Ait Atmane, H., Tounsi, A. and Bernard, F. (2017), "Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations", Int. J. Mech. Mater. Des., 13(1), 71-84. https://doi.org/10.1007/s10999-015-9318-x
  5. Ansari, R. and Gholami, R. (2016), "Size-Dependent Nonlinear Vibrations of First-Order Shear Deformable Magneto-Electro-Thermo Elastic Nanoplates Based on the Nonlocal Elasticity Theory", Int. J. Appl. Mech., 08(04), 1650053. https://doi.org/10.1142/S1758825116500538
  6. Arefi, M. (2013), "Nonlinear thermoelastic analysis of thick-walled functionally graded piezoelectric cylinder", Acta Mech., 224(11), 2771-2783. https://doi.org/10.1007/s00707-013-0888-0
  7. Arefi, M. (2014), "A complete set of equations for piezomagnetoelastic analysis of a functionally graded thick shell of revolution", Lat. Am. J. Solids. Struct., 11(11), 2073-2098. https://doi.org/10.1590/S1679-78252014001100009
  8. Arefi, M. and Adab, N. (2021), "Coupled stress based formulation for static and dynamic analyses of a higher-order shear and normal deformable FG-GPL reinforced microplates", Wave. Rand. Complex Media. https://doi.org/10.1080/17455030.2021.1989084
  9. Arefi, M. and Civalek, O. (2020), "Static analysis of functionally graded composite shells on elastic foundations with nonlocal elasticity theory", Arch. Civil. Mech. Eng., 20(1), 1-17. https://doi.org/10.1007/s43452-020-00032-2
  10. Arefi, M. and Nahas, I. (2014), "Nonlinear electro thermo elastic analysis of a thick spherical functionally graded piezoelectric shell", Compos. Struct., 118, 510-518. https://doi.org/10.1016/j.compstruct.2014.08.002
  11. Arefi, M. and Rahimi, G.H. (2010), "Thermo elastic analysis of a functionally graded cylinder under internal pressure using first order shear deformation theory", Sci. Res. Essays., 5(12), 1442-1454. https://doi.org/10.5897/SRE.9000953
  12. Arefi, M. and Rahimi, G.H. (2011), "Non linear analysis of a functionally graded square plate with two smart layers as sensor and actuator under normal pressure", Smart Struct. Syst., Int. J., 8(5), 433-447. https://doi.org/10.12989/sss.2011.8.5.433
  13. Arefi, M. and Rahimi, G.H. (2012a), "Studying the nonlinear behavior of the functionally graded annular plates with piezoelectric layers as a sensor and actuator under normal pressure", Smart Struct. Syst., Int. J., 9(2), 127-143. https://doi.org/10.12989/sss.2012.9.2.127
  14. Arefi, M. and Rahimi, G.H. (2012b), "Three-dimensional multi-field equations of a functionally graded piezoelectric thick shell with variable thickness, curvature and arbitrary nonhomogeneity", Acta Mech., 223(1), 63-79. https://doi.org/10.1007/s00707-011-0536-5
  15. Arefi, M. and Rahimi, G.H. (2012c), "Comprehensive thermoelastic analysis of a functionally graded cylinder with different boundary conditions under internal pressure using first order shear deformation theory", Mechanika, 18(1), 5-13. https://doi.org/10.5755/j01.mech.18.1.1273
  16. Arefi, M. and Rahimi, G.H. (2014), "Application of shear deformation theory for two dimensional electro-elastic analysis of a FGP cylinder", Smart Struct. Syst., Int. J., 13(1), 1-24. https://doi.org/10.12989/sss.2014.13.1.001
  17. Arefi, M. and Soltan Arani, A.H. (2020), "Nonlocal vibration analysis of the three-layered FG nanoplates subjected to applied electric potential considering thickness stretching effect", Proc. Inst. Mech. Eng., Part L: J. Mater.: Design. Appl., 234(9), 1183-1202. https://doi.org/10.1177/1464420720928378
  18. Arefi, M. and Zenkour, A.M. (2016), "A simplified shear and normal deformations nonlocal theory for bending of functionally graded piezomagnetic sandwich nanobeams in magneto-thermo-electric environment", J. Sandw. Struct. Mater., 18(5), 624-651. https://doi.org/10.1177/1099636216652
  19. Arefi, M. and Zenkour, A.M. (2017a), "Transient analysis of a three-layer microbeam subjected to electric potential", Int. J. Smart. Nano. Mater., 8(1), 20-40. https://doi.org/10.1080/19475411.2017.1292967
  20. Arefi, M. and Zenkour, A.M. (2017b), "Employing the coupled stress components and surface elasticity for nonlocal solution of wave propagation of a functionally graded piezoelectric Love nanorod model", J. Intel. Mater. Syst. Struct., 28(17), 2403-2413. https://doi.org/10.1177/1045389X17689930
  21. Arefi, M. and Zenkour, A.M. (2018), "Size-dependent electro-elastic analysis of a sandwich microbeam based on higher-order sinusoidal shear deformation theory and strain gradient theory", J. Intel. Mater. Syst. Struct., 29(7), 1394-1406. https://doi.org/10.1177/1045389X17733333
  22. Arefi, M. and Zenkour, A.M. (2019), "Effect of thermo-magneto-electro-mechanical fields on the bending behaviors of a three-layered nanoplate based on sinusoidal shear-deformation plate theory", J. Sandw. Struct. Mater., 21(2), 639-669. https://doi.org/10.1177/1099636217697497
  23. Arefi, M., Rahimi, G.H. and Khoshgoftar, M.J. (2011), "Optimized design of a cylinder under mechanical, magnetic and thermal loads as a sensor or actuator using a functionally graded piezomagnetic material", Int. J. Phys. Sci., 6(27), 6315-6322. https://doi.org/10.5897/IJPS10.597
  24. Arefi, M., Mohammadi, M., Tabatabaeian, A., Dimitri, R. and Tornabene, F. (2018), "Two-dimensional thermo-elastic analysis of FG-CNTRC cylindrical pressure vessels", Steel Compos. Struct., Int. J., 27(4), 525-536. https://doi.org/10.12989/scs.2018.27.4.525
  25. Arefi, M., Bidgoli, E.M.R., Dimitri, R., Tornabene, F. and Reddy, J.N. (2019), "Size-dependent free vibrations of FG polymer composite curved nanobeams reinforced with graphene nanoplatelets resting on Pasternak foundations", Appl. Sci., 9(8), 1580. https://doi.org/10.3390/app9081580
  26. Arefi, M., Kiani, M. and Zenkour, A.M. (2020), "Size-dependent free vibration analysis of a three-layered exponentially graded nano-/micro-plate with piezomagnetic face sheets resting on Pasternak's foundation via MCST", J. Sandw. Struct. Mater., 22(1), 55-86. https://doi.org/10.1177/1099636217734279
  27. Ashraf, M., Abbas, A., Zia, S., Chu, Y.M., Khan, I. and Nisar, K.S. (2020), "Computational analysis of the effect of nano particle material motion on mixed convection flow in the presence of heat generation and absorption", Comput. Mater. Continua., 65(2), 1809-1823. https://doi.org/10.32604/cmc.2020.011404
  28. Bakirov, Z.B., Bakirov, M.Z.H., Tazhenova, G.D. and Nuguzhinov, Z.S. (2020), "Structural optimization of linear vibration isolation systems", J. Theor. Appl. Mech. Bulgaria, 50(1), 36-49. https://doi.org/10.7546/JTAM.50.20.01.04
  29. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Beg, O.A. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos B: Eng., 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
  30. Bendenia, N., Zidour, M., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Bedia, E.A., Mahmoud, S.R. and Tounsi, A. (2020), "Deflections, stresses and free vibration studies of FG-CNT reinforced sandwich plates resting on Pasternak elastic foundation", Comput. Concrete, Int. J., 26(3), 213-226. http://dx.doi.org/10.12989/cac.2020.26.3.213
  31. Bouafia, K., Selim, M.M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A., Bedia, E.A. and Tounsi, A. (2021), "Bending and free vibration characteristics of various compositions of FG plates on elastic foundation via quasi 3D HSDT model", Steel Compos. Struct., Int. J., 41(4), 487-503. https://doi.org/10.12989/scs.2021.41.4.487
  32. Chen, W.Q., Lu, C.F. and Bian, Z.G. (2004), "A mixed method for bending and free vibration of beams resting on a Pasternak elastic foundation", Appl. Math. Model., 28, 877-890. https://doi.org/10.1016/j.apm.2004.04.001
  33. Dehsaraji, M.L., Arefi, M. and Loghman, A. (2020), "Three dimensional free vibration analysis of functionally graded nano cylindrical shell considering thickness stretching effect", Steel Compos. Struct., Int. J., 34(5), 657-670. https://doi.org/10.12989/scs.2020.34.5.657
  34. Dehsaraji, M.L., Arefi, M. and Loghman, A. (2021), "Size dependent free vibration analysis of functionally graded piezoelectric micro/nano shell based on modified couple stress theory with considering thickness stretching effect", Defence. Tech., 17(1), 119-134. https://doi.org/10.1016/j.dt.2020.01.001
  35. Ding, C., Liang, X., Yang, R., Zhang, Z.X., Guo, X., Feng, C., Zhu, X. and Xie, Q. (2023), "A study of crack propagation during blasting under high in-situ stress conditions based on an improved CDEM method", Mech. Adv. Mater. Struct., pp. 1-18. https://doi.org/10.1080/15376494.2023.2208112
  36. Fu, Z.H., Yang, B.J., Shan, M.L., Li, T., Zhu, Z.Y., Ma, C.P., Zhang, X., Gou, G.Q., Wang, Z.R. and Gao, W. (2020), "Hydrogen embrittlement behavior of SUS301L-MT stainless steel laser-arc hybrid welded joint localized zones", Corrosion. Sci., 164, 108337. https://doi.org/10.1016/j.corsci.2019.108337
  37. Ge-JiLe, H., Javid, K., Khan, S.U., Raza, M., Khan, M.I. and Qayyum, S. (2021a), "Sumaira Qayyum, Double diffusive convection and Hall effect in creeping flow of viscous nanofluid through a convergent microchannel: a biotechnological applications", Comput. Meth. Biomech. Biomed. Eng., 24(12), 1326-1343. https://doi.org/10.1080/10255842.2021.1888373
  38. Ge-JiLe, H., Waqas, H., Khan, S.U., Khan, M.I., Farooq, S. and Hussain, S. (2021b), "Three-dimensional radiative bioconvective flow of a Sisko nanofluid with motile microorganisms", Coatings, 11(3), 335. https://doi.org/10.3390/coatings11030335
  39. Ghabussi, A., Ashrafi, N., Shavalipour, A., Hosseinpour, A., Habibi, M., Moayedi, H., Babaei, B. and Safarpour, H. (2021), "Free vibration analysis of an electro-elastic GPLRC cylindrical shell surrounded by viscoelastic foundation using modified length-couple stress parameter", Mech. Based. Design. Struct. Mach., 49(5), 738-762. https://doi.org/10.1080/15397734.2019.1705166
  40. Ghadiri, M. and Safarpour, H. (2016), "Free vibration analysis of embedded magneto-electro-thermo-elastic cylindrical nanoshell based on the modified couple stress theory", Appl. Phys. A, 122, 833. https://doi.org/10.1007/s00339-016-0365-4
  41. Goodier, J.N. and Timoshenko, S. (1970), Theory of Elasticity, New York: McGraw-Hill.
  42. Gu, M., Cai, X., Fu, Q., Li, H., Wang, X. and Mao, B. (2022), "Numerical analysis of passive piles under surcharge load in extensively deep soft soil", Buildings, 12(11), 1988. https://doi.org/10.3390/buildings12111988
  43. Guo, K., Gou, G., Lv, H. and Shan, M. (2022), "Jointing of CFRP/5083 Aluminum Alloy by Induction Brazing: Processing, Connecting Mechanism, and Fatigue Performance", Coatings, 12(10), 1559. https://doi.org/10.3390/coatings12101559
  44. Habibi, M., Taghdir, A. and Safarpour, H. (2019), "Stability analysis of an electrically cylindrical nanoshell reinforced with graphene nanoplatelets", Compos. Part B: Eng., 175, 107125. https://doi.org/10.1016/j.compositesb.2019.107125
  45. Hadji, L., Atmane, H.A., Tounsi, A., Mechab, I. and Adda Bedia, E.A. (2011), "Free vibration of functionally graded sandwich plates using four variable refined plate theory", Appl. Math. Mech., 32, 925-942. https://doi.org/10.1007/s10483-011-1470-9
  46. Haq, F., Kadry, S., Chu, Y.M., Khan, M. and Khan, M.I. (2020), "Modeling and theoretical analysis of gyrotactic microorganisms in radiated nanomaterial Williamson fluid with activation energy", J. Mater. Res. Tech., 9(5), 10468-10477. https://doi.org/10.1016/j.jmrt.2020.07.025
  47. Heidari, Y., Arefi, M. and Irani-Rahaghi, M. (2021), "Free vibration analysis of cylindrical micro/nano-shell reinforced with CNTRC patches", Int. J. Appl. Mech., 13(04), 2150040. https://doi.org/10.1142/S175882512150040X
  48. Huang, Y., Karami, B., Shahsavari, D. and Tounsi, A. (2021), "Static stability analysis of carbon nanotube reinforced polymeric composite doubly curved micro-shell panels", Archiv. Civil Mech. Eng., 21, 139. https://doi.org/10.1007/s43452-021-00291-7
  49. Houari, M.S.A., Tounsi, A. and Beg, O.A. (2013), "Thermoelastic bending analysis of functionally graded sandwich plates using a new higher order shear and normal deformation theory", Int. J. Mech. Sci., 76, 102-111. https://doi.org/10.1016/j.ijmecsci.2013.09.004
  50. Khan, U., Ahmed, N., Mohyud-Din, S.T., Chu, Y.M., Khan, I. and Nisar, K.S. (2020a), "γ-Nanofluid thermal transport between parallel plates suspended by micro-cantilever sensor by incorporating the effective Prandtl model: applications to biological and medical sciences", Molecules, 25(8), 1777. https://doi.org/10.3390/molecules25081777
  51. Khan, M.I., Kadry, S., Chu, Y.M., Khan, W.A. and Kumar, A. (2020b), "Exploration of Lorentz force on a paraboloid stretched surface in flow of Ree-Eyring nanomaterial", J. Mater. Res. Tech., 9(5), 110265-10275. https://doi.org/10.1016/j.jmrt.2020.07.017
  52. Khan, M.I., Khan, S.U., Jameel, M., Chu, Y.M., Tlili, I. and Kadry, S. (2021), "Significance of temperature-dependent viscosity and thermal conductivity of Walter's B nanoliquid when sinusodal wall and motile microorganisms density are significant", Surf. Interf., 22, 100849. https://doi.org/10.1016/j.surfin.2020.100849
  53. Ibrahim, M., Saeed, T., Bani, F.R., Sedeh, S.N., Chu, Y.M. and Toghraie, D. (2021a), "Two-phase analysis of heat transfer and entropy generation of water-based magnetite nanofluid flow in a circular microtube with twisted porous blocks under a uniform magnetic field", Powder. Tech., 384, 522-541. https://doi.org/10.1016/j.powtec.2021.01.077
  54. Ibrahim, M., Berrouk, A.S., Algehyne, E.A., Saeed, T. and Chu, Y.M. (2021b), "Energetic and exergetic analysis of a new circular micro-heat sink containing nanofluid: applicable for cooling electronic equipment", J. Therm. Ana. Calorimetry., 145(3), 1547-1557. https://doi.org/10.1007/s10973-021-10722-5
  55. Ibrahim, M., Saleem, S., Chu, Y.M., Ullah, M. and Heidarshenas, B. (2021c), "An investigation of the exergy and first and second laws by two-phase numerical simulation of various nanopowders with different diameter on the performance of zigzag-wall micro-heat sink (ZZW-MHS)", J. Therm. Ana. Calorimetry, 144(3), 1611-1621. https://doi.org/10.1007/s10973-021-10786-3
  56. Karimi, M. and Rafieian, S. (2019), "A comprehensive investigation into the impact of nonlocal strain gradient and modified couple stress models on the rates of surface energy layers of BiTiO3-CoFe2O4 nanoplates: a vibration analysis", Mater. Res. Express., 6, 075038. https://doi.org/10.1088/2053-1591/ab151b
  57. Khan, U., Zaib, A., Waini, I., Ishak, A., Sherif, E.S.M., Xia, W.F. and Muhammad, N. (2022), "Impact of Smoluchowski temperature and Maxwell velocity slip conditions on axisymmetric rotated flow of hybrid nanofluid past a porous moving rotating disk", Nanomaterials., 12(2), 276. https://doi.org/10.3390/nano12020276
  58. Kholdi, M., Rahimi, G., Loghman, A., Ashrafi, H. and Arefi, M. (2022a), "Analysis of thick-walled spherical shells subjected to various temperature gradients: thermo-elasto-plastic and residual stress studies", Int. J. Appl. Mech., 13(9), 2150105. https://doi.org/10.1142/S1758825121501052
  59. Kholdi, M., Saeedi, S., Zargar Moradi, S.A., Loghman, A. and Arefi, M. (2022b), "A successive approximation method for thermo-elasto-plastic analysis of a reinforced functionally graded rotating disc", Arch. Civil Mech. Eng., 22(1), 1-13. https://doi.org/10.1007/s43452-021-00321-4
  60. Khoshgoftar, M.J., Rahimi, G.H. and Arefi, M. (2013), "Exact solution of functionally graded thick cylinder with finite length under longitudinally non-uniform pressure", Mech. Res. Com., 51, 61-66. https://doi.org/10.1016/j.mechrescom.2013.05.001
  61. Le, T.C., Nguyen, K.D., Minh, H.L., Vu, P.P., Trong, P.N. and Tounsi, A. (2022), "Nonlinear bending analysis of porous sigmoid FGM nanoplate via IGA and nonlocal strain gradient theory", Adv. Nano Res., Int. J., 12(5), 441-455. https://doi.org/10.12989/anr.2022.12.5.441
  62. Lekhnitskii, S.G. (1968), Anisotropic Plates, second edition, Gordon and Breach.
  63. Liao, D., Zhu, S., Keshtegar, B., Qian, G. and Wang, Q. (2020), "Probabilistic framework for fatigue life assessment of notched components under size effects", Int. J. Mech. Sci., 181, 105685. doi: https://doi.org/10.1016/j.ijmecsci.2020.105685
  64. Liu, G., Wu, S., Shahsavari, D., Karami, B. and Tounsi, A. (2022), "Dynamics of imperfect inhomogeneous nanoplate with exponentially-varying properties resting on viscoelastic foundation", Eur. J. Mech-A/Solids, 95, 104649. https://doi.org/10.1016/j.euromechsol.2022.104649
  65. Lund, L.A., Omar, Z., Dero, S., Chu, Y. and Khan, I. (2020), "Temporal stability analysis of magnetized hybrid nanofluid propagating through an unsteady shrinking sheet: partial slip conditions", Comput., Mater. Continua., 66(2), 1963-1975. https://doi.org/10.32604/cmc.2020.011976
  66. Liu, M., Li, C., Zhang, Y., Yang, M., Gao, T., Cui, X., Wang, X., Xu, W., Zhou, Z., Liu, B., Said, Z., Li, R. and Sharma, S. (2022), "Analysis of grinding mechanics and improved grinding force model based on randomized grain geometric characteristics", Chin. J. Aeronautics. https://doi.org/10.1016/j.cja.2022.11.005
  67. Maouedj, R., Menni, Y., Inc, M., Chu, Y.M., Ameur, H. and Lorenzini, G. (2021), "Simulating the turbulent hydrothermal behavior of oil/MWCNT nanofluid in a solar channel heat exchanger equipped with vortex generators", Comput. Modeling. Eng. Sci., 126(3), 855-889. https://doi.org/10.32604/cmes.2021.014524
  68. Mohammad-Rezaei Bidgoli, E. and Arefi, M. (2021), "Free vibration analysis of micro plate reinforced with functionally graded graphene nanoplatelets based on modified strain-gradient formulation", J. Sandw. Struct. Mater., 23(2), 436-472. https://doi.org/10.1177/1099636219839302
  69. Niu, X., Zhu, S.P., He, J.C., Liao, D., Correia, J.A., Berto, F. and Wang, Q. (2022), "Defect tolerant fatigue assessment of AM materials: Size effect and probabilistic prospects", Int. J. Fatig., 160, 106884. https://doi.org/10.1016/j.ijfatigue.2022.106884
  70. Nuguzhinov, Z.S. Bakirov, Z.B. Vatin, N.I. Bakirov, M.Z. Kurokhtina, I.A. Tokanov, D.T. Khabidolda, O. (2021), "Stress intensity factor of reinforced concrete beams in bending", Buildings, 11(7), 287. https://doi.org/10.3390/buildings11070287
  71. Peng, J., Xu, C., Dai, B., Sun, L., Feng, J. and Huang, Q. (2022), "Numerical Investigation of Brittleness Effect on Strength and Microcracking Behavior of Crystalline Rock", Int. J. Geomech., 22(10), 4022178. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002529
  72. Qiao, W., Fu, Z., Du, M., Nan, W. and Liu, E. (2023), "Seasonal peak load prediction of underground gas storage using a novel two-stage model combining improved complete ensemble empirical mode decomposition and long short-term memory with a sparrow search algorithm", Energy, 274, 127376. https://doi.org/10.1016/j.energy.2023.127376
  73. Rahimi, G.H., Arefi, M. and Khoshgoftar, M.J. (2011), "Application and analysis of functionally graded piezoelectrical rotating cylinder as mechanical sensor subjected to pressure and thermal loads", Appl. Math. Mech. (Eng. Ed.), 32(8), 997-1008. https://doi.org/10.1007/s10483-011-1475-6
  74. Rahimi, G.H., Arefi, M. and Khoshgoftar, M.J. (2012), "Electro elastic analysis of a pressurized thick-walled functionally graded piezoelectric cylinder using the first order shear deformation theory and energy method", Mechanika, 18(3), 292-300. https://doi.org/10.5755/j01.mech.18.3.1875
  75. Ramesh, K., Khan, S.U., Jameel, M., Khan, M.I., Chu, Y.M. and Kadry, S. (2020), "Bioconvection assessment in Maxwell nanofluid configured by a Riga surface with nonlinear thermal radiation and activation energy", Surf. Interf., 21, 100749. https://doi.org/10.1016/j.surfin.2020.100749
  76. Saqib, M., Shafie, S., Khan, I., Chu, Y.M. and Nisar, K.S. (2020), "Symmetric MHD channel flow of nonlocal fractional model of BTF containing hybrid nanoparticles", Symmetry, 12(4), 663. https://doi.org/10.3390/sym12040663
  77. She, Q., Hu, R., Xu, J., Liu, M., Xu, K. and Huang, H. (2022), "Learning high-DOF reaching-and-grasping via dynamic representation of gripper-object interaction", ACM Trans. Graph., 41(4). https://doi.org/10.1145/3528223.3530091
  78. Shen, X.Y., Hekmatifar, M., Shukor, M.Y.A., Alizadeh, A.A., Sun, Y.L., Toghraie, D. and Sabetvand, R. (2021), "Molecular dynamics simulation of water-based ferro-nanofluid flow in the microchannel and nanochannel: effects of number of layers and material of walls", J. Molec. Liq., 338, 116924. https://doi.org/10.1016/j.molliq.2021.116924
  79. Shi, T., Liu, Y., Hu, Z., Cen, M., Zeng, C., Xu, J. and Zhao, Z (2022a), "Deformation Performance and Fracture Toughness of Carbon Nanofiber Modified Cement-Based Materials", ACI Mater. J., 119(5), 119-128. https://doi.org/10.14359/51735976
  80. Shi, T., Liu, Y., Zhao, X., Wang, J., Zhao, Z., Corr, D.J. and Shah, S.P. (2022b), "Study on mechanical properties of the interfacial transition zone in carbon nanofiber-reinforced cement mortar based on the PeakForce tapping mode of atomic force microscope", J. Building. Eng., 61, 105248. https://doi.org/10.1016/j.jobe.2022.105248
  81. Su, Z., Meng, J. and Su, Y. (2023), "Application of SiO2 nanocomposite ferroelectric material in preparation of trampoline net for physical exercise", Adv. Nano Res., Int. J., 14(4), 355-362. https://doi.org/10.12989/anr.2023.14.4.355
  82. Timoshenko, S. and Woinowsky-Krieger, S. (1959), Theory of Plates and Shells, (Engineering Societies Monographs)" 2nd Edition, McGraw-Hill College.
  83. Wang, H., Zheng, X., Yuan, X. and Wu, X. (2022), "Low-Complexity Model Predictive Control for a Nine-Phase Open-End Winding PMSM with Dead-Time Compensation", IEEE Trans. Power. Electron., 37(8), 8895-8908. https://doi.org/10.1109/TPEL.2022.3146644
  84. Yang, K., Qin, N., Yu, H., Zhou, C., Deng, H., Tian, W., Cai, S., Wu, Z. and Guan, J. (2022), "Correlating multi-scale structure characteristics to mechanical behavior of Caprinae horn sheaths", J. Mater. Res. Tech., 21, 2191-2202. https://doi.org/10.1016/j.jmrt.2022.10.044
  85. Ying, J., Lu, C.F. and Chen, W.Q. (2008), "Two-dimensional elasticity solutions for functionally graded beams resting on elastic foundations", Compos. Struct., 84, 209-219. https://doi.org/10.1016/j.compstruct.2007.07.004
  86. Zhang, Z., Sui, M., Li, C., Zhou, Z., Liu, B., Chen, Y., Said, Z., Debnath, S. and Sharma, S. (2022a), "Residual stress of MoS2 nano-lubricant grinding cemented carbide", Int. J. Adv. Manuf. Tech., 119, 5671-5685. https://doi.org/10.1007/s00170-022-08660-z
  87. Zhang, H., Ouyang, Z., Li, L., Ma, W., Liu, Y., Chen, F. and Xiao, X. (2022b), "Numerical study on welding residual stress distribution of corrugated steel webs", Metals, 12(11), 1831. https://doi.org/10.3390/met12111831
  88. Zhong, J.F., Sedeh, S.N., Lv, Y.P., Arani, B. and Toghraie, D. (2021), "Investigation of ferro-nanofluid flow within a porous ribbed microchannel heat sink using single-phase and two-phase approaches in the presence of constant magnetic field", Powder. Tech., 387, 251-260. https://doi.org/10.1016/j.powtec.2021.04.033
  89. Zhu, Q., Chen, J., Gou, G., Chen, H. and Li, P. (2017), "Ameliorated longitudinal critically refracted-Attenuation velocity method for welding residual stress measurement", J. Mater. Proc. Tech., 246, 267-275. https://doi.org/10.1016/j.jmatprotec.2017.03.022